BN.com Gift Guide

A Brief History of Time: From the Big Bang to Black Holes

( 152 )

Overview

#1 NEW YORK TIMES BESTSELLER

A landmark volume in science writing by one of the great minds of our time, Stephen Hawking’s book explores such profound questions as: How did the universe begin—and what made its start possible? Does time always flow forward? Is the universe unending—or are there boundaries? Are there other dimensions in space? What will happen when it all ends?

Told in language we all can understand, A Brief History of Time ...

See more details below
Paperback (10TH ANNIVERSARY)
$11.56
BN.com price
(Save 35%)$18.00 List Price

Pick Up In Store

Reserve and pick up in 60 minutes at your local store

Other sellers (Paperback)
  • All (32) from $5.68   
  • New (14) from $10.34   
  • Used (18) from $5.67   
A Brief History of Time: From the Big Bang to Black Holes

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$9.99
BN.com price
(Save 28%)$13.99 List Price
Marketplace
BN.com

All Available Formats & Editions

Overview

#1 NEW YORK TIMES BESTSELLER

A landmark volume in science writing by one of the great minds of our time, Stephen Hawking’s book explores such profound questions as: How did the universe begin—and what made its start possible? Does time always flow forward? Is the universe unending—or are there boundaries? Are there other dimensions in space? What will happen when it all ends?

Told in language we all can understand, A Brief History of Time plunges into the exotic realms of black holes and quarks, of antimatter and “arrows of time,” of the big bang and a bigger God—where the possibilities are wondrous and unexpected. With exciting images and profound imagination, Stephen Hawking brings us closer to the ultimate secrets at the very heart of creation.

This landmark volume in scientific writing leads us on an exhilarating journey to distant galaxies, black holes, and alternate dimensions, and includes Professor Hawking's observations about the last decade's advances -- developments that have confirmed many of his theoretical predictions. Makes vividly clear how Professor Hawking's work has transformed our view of the universe.

Read More Show Less

Editorial Reviews

From Barnes & Noble
Perhaps the most famous popular science book of recent years, A Brief History of Time even had the distinct honor of being made into a movie. This tenth anniversary edition has been revised and updated to reflect discoveries made since the original 1988 publication. It also contains a new introduction and a chapter on wormholes.
From the Publisher
“[Hawking] can explain the complexities of cosmological physics with an engaging combination of clarity and wit. . . . His is a brain of extraordinary power.”—The New York Review of Books

“This book marries a child’s wonder to a genius’s intellect. We journey into Hawking’s universe while marvelling at his mind.”—The Sunday Times (London)
 
“Masterful.”—The Wall Street Journal

“Charming and lucid . . . [A book of] sunny brilliance.”—The New Yorker

“Lively and provocative . . . Mr. Hawking clearly possesses a natural teacher’s gifts—easy, good-natured humor and an ability to illustrate highly complex propositions with analogies plucked from daily life.”—The New York Times

“Even as he sits helpless in his wheelchair, his mind seems to soar ever more brilliantly across the vastness of space and time to unlock the secrets of the universe.”—Time

Publishers Weekly - Publisher's Weekly
Hawking's discovery that black holes emit particles caused great excitement among astronomers. In this succinct overview of current theories of the cosmos, the Cambridge University physicist modestly weaves in his own notable contributions while giving due credit to his colleagues. He explains why relativity implies that a ``big bang'' occurred and examines string theory, which posits a universe of 10 or 26 dimensions. His understanding of time's flow leads him to conclude that intelligent beings can only exist during the expansion phase of our increasingly chaotic universe. New research on black holes and subatomic particles holds implications for scientists who, like Hawking, are attempting to devise a unified theory linking Einstein to quantum mechanics. The merit of this book is Hawking's ability to make these ideas graspable by the lay reader. (April)
Library Journal
A central question underlies this brief but crystal-clear account of the history of physical speculation about the universe: does the universe always operate in the same manner or does it allow for divergence? That the universe is static, as once thought, eventually proved impossible to reconcile with evidence from astronomy, for how could an expanding universe follow unchanging laws of nature? Hawking, along with mathematician Roger Penrose, discovered the answer: relativity theory not only allows, but requires, a big bang. The discussion does not end therethe universe may really be static, the ``big bang'' being local history in only a part of the universebut once again Hawking has proved himself a pioneer. David Gordon, Bowling Green State Univ., Ohio
Read More Show Less

Product Details

  • ISBN-13: 9780553380163
  • Publisher: Random House Publishing Group
  • Publication date: 9/28/1998
  • Edition description: 10TH ANNIVERSARY
  • Edition number: 10
  • Pages: 224
  • Sales rank: 104
  • Lexile: 1290L (what's this?)
  • Product dimensions: 5.99 (w) x 8.97 (h) x 0.56 (d)

Meet the Author

Stephen Hawking

Stephen Hawking is Lucasian Professor of Mathematics at the University of Cambridge; his other books for the general reader include A Briefer History of Time, Black Holes and Baby Universes and The Universe in a Nutshell.

Biography

In the universe as a whole, the nature of black holes may be one of the most puzzling mysteries. No less puzzling, in the slightly smaller universe of book publishing, is the astounding popular success of Stephen Hawking's 1988 book on the matter, or anti-matter, as it were: A Brief History of Time: From the Big Bang to Black Holes.

Clocking in at just over 200 pages, it was, indeed, brief, but it was hardly the easy read its marketers promised. Nor did it stray much beyond the tone of a scholarly lecture, though at times it did take quick autobiographical peeks into Hawking's personal life. Still, it is just the author's persona that may have been the selling point prompting more than 10 million people worldwide to pick up a copy -- and to have it translated into more than 40 languages in the 10 years since its release.

For Stephen Hawking is an instantly recognizable public figure -- even for those who haven't delved into his so far unprovable theories about black holes. Stricken by amyotrophic lateral sclerosis (ALS) -- or Lou Gehrig's disease, as it is called in the States -- while he was working toward his doctorate at Cambridge University, this Englishman is known for the keen wit and intellect that reside within his severely disabled body. He uses a motorized wheelchair to get around and a voice synthesizer to communicate -- a development, he complains, that has given him an American accent. He has guest-starred, in cartoon form, on an episode of The Simpsons and has appeared in the flesh on Star Trek: The Next Generation, using the benefits of time travel to play poker with Albert Einstein and Isaac Newton. (He has said he doesn't believe in the theory himself, noting that the most powerful evidence of its impossibility is the present-day dearth of time-traveling tourists from the future.)

The son of a research biologist, Hawking resisted familial urging that he major in biology and instead studied physics and chemistry -- as a nod to his father -- when he went to Oxford University as a 17-year-old. In academic writing, Hawking had an extensive career pre-History, starting with The Large Scale Structure of Space-Time, coauthored with G.F.R. Ellis in 1973. But in the late 1980s, faced with the expenses incurred by his illness, he took up Bantam Books' offer to explain the mysteries of the universe to the lay public.

"This is one of the best books for laymen on this subject that has appeared in recent years," The Christian Science Monitor wrote in 1988. "Hawking is one of the greatest theoretical cosmologists of our time. He is greater, by consensus among his colleagues, than other expert authors who have written good popular books on the subject recently. And he is greater, by far, than the ‘experts' who have ‘explained' quantum physics and cosmology in terms that support a religious agenda." And The New York Times in April 1988 said, "Through his cerebral journeys, Mr. Hawking is bravely taking some of the first, though tentative, steps toward quantizing the early universe, and he offers us a provocative glimpse of the work in progress."

Since then, A Brief History of Time has been republished in an illustrated edition (1996) and as an updated and expanded 10th anniversary edition (1998). In Black Holes and Baby Universes and Other Essays, a collection of 13 essays and the transcript of an extended interview with the BBC, Hawking turned more autobiographical, mixing stories about his studies in college and the beginning of his awareness that he had ALS with thoughts on how black holes can spawn baby universes and on the scientific community's efforts to create a unified theory that will explain everything in the universe. And in The Universe in a Nutshell, his sequel to A Brief History of Time, Hawking takes the same approach as he did in his first bestseller, explaining to the lay reader such ideas as the superstring theory, supergravity, time travel, and quantum theory.

A common current in Hawking's writing -- aside from his grasp of the complexities of the universe -- is a sharp wit. In one of the rare personal reflections in A Brief History of Time, he said he began thinking about black holes in the early 1970s in the evenings as he was getting ready for bed: "My disability makes this rather a slow process, so I had plenty of time." In life, he has a reputation for quickly turning his wheelchair away of a conversation that displeases him, even running his wheels over the toes of the offending conversant.

Even questions about his muse are likely to draw an answer tinged with pointed humor. When Time asked Hawking why he decided to add explaining the universe to a schedule already taxed by his scholarly writing and lecture tours, he answered, "I have to pay for my nurses."

Good To Know

Hawking worked 1,000 hours in his three years at Oxford, roughly an hour a day. "I'm not proud of this lack of work," he said in Stephen Hawking's a Brief History of Time: A Reader's Companion. "I'm just describing my attitude at the time, which I shared with most of my fellow students: an attitude of complete boredom and feeling that nothing was worth making an effort for."

Despite his science degrees, Hawking has no formal training in math and has said he had to pick up what he knows as he went along.

Read More Show Less
    1. Hometown:
      Cambridge, England
    1. Date of Birth:
      January 8, 1942
    2. Place of Birth:
      Oxford, England

Read an Excerpt

Chapter One

Our picture of the universe

A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got up and said: “What you have told us is rubbish. The world is really a flat plate supported on the back of a giant tortoise.” The scientist gave a superior smile before replying, “What is the tortoise standing on?” “You’re very clever, young man, very clever,” said the old lady. “But it’s turtles all the way down!”

Most people would find the picture of our universe as an infinite tower of tortoises rather ridiculous, but why do we think we know better? What do we know about the universe, and how do we know it? Where did the universe come from, and where is it going? Did the universe have a beginning, and if so, what happened before then? What is the nature of time? Will it ever come to an end? Can we go back in time? Recent breakthroughs in physics, made possible in part by fantastic new technologies, suggest answers to some of these longstanding questions. Someday these answers may seem as obvious to us as the earth orbiting the sun–or perhaps as ridiculous as a tower of tortoises. Only time (whatever that may be) will tell.

As long ago as 340 B.C. the Greek philosopher Aristotle, in his book On the Heavens, was able to put forward two good arguments for believing that the earth was a round sphere rather than a flat plate. First, he realized that eclipses of the moon were caused by the earth coming between the sun and the moon. The earth’s shadow on the moon was always round, which would be true only if the earth was spherical. If the earth had been a flat disk, the shadow would have elongated and elliptical, unless the eclipse always occurred at a time when the sun was directly under the center of the disk. Second, the Greeks knew from their travels that the North Star appeared lower in the sky when viewed in the south than it did in more northerly regions. (Since the North Star lies over the North Pole, it appears to be directly above an observer at the North Pole, but to someone looking from the equator, it appears to lie just at the horizon. From the difference in the apparent position of the North Star in Egypt and Greece, Aristotle even quoted an estimate that the distance around the earth was 400,000 stadia. It is not known exactly what length a stadium was, but it may have been about 200 yards, which would make Aristotle’s estimate about twice the currently accepted figure. The Greeks even had a third argument that the earth must be round, for why else does one first see the sails of a ship coming over the horizon, and only later see the hull?

Aristotle thought the earth was stationary and that the sun, the moon, the planets, and the stars moved in circular orbits about the earth. He believed this because he felt, for mystical reasons, that the earth was the center of the universe, and that circular motion was the most perfect. This idea was elaborated by Ptolemy in the second century A.D. into a complete cosmological model. The earth stood at the center, surrounded by eight spheres that carried the moon, the sun, the stars, and the five planets known at the time, Mercury, Venus, Mars, Jupiter, and Saturn (Fig 1.1). The planets themselves moved on smaller circles attached to their respective spheres in order to account for their rather complicated observed paths in the sky. The outermost sphere carried the so-called fixed stars, which always stay in the same positions relative to each other but which rotate together across the sky. What lay beyond the last sphere was never made very clear, but it certainly was not part of mankind’s observable universe.

Ptolemy’s model provided a reasonably accurate system for predicting the positions of heavenly bodies in the sky. But in order to predict these positions correctly, Ptolemy had to make an assumption that the moon followed a path that sometimes brought it twice as close to the earth as at other times. And that meant that the moon ought sometimes to appear twice as big as at other times! Ptolemy recognized this flaw, but nevertheless his model was generally, although not universally, accepted. It was adopted by the Christian church as the picture of the universe that was in accordance with Scripture, for it had the great advantage that it left lots of room outside the sphere of fixed stars for heaven and hell.

A simpler model, however, was proposed in 1514 by a Polish priest, Nicholas Copernicus. (At first, perhaps for fear of being branded a heretic by his church, Copernicus circulated his model anonymously.) His idea was that the sun was stationary at the center and that the earth and the planets moved in circular orbits around the sun. Nearly a century passed before this idea was taken seriously. Then two astronomers–the German, Johannes Kepler, and the Italian, Galileo Galilei–started publicly to support the Copernican theory, despite the fact that the orbits it predicted did not quite match the ones observed. The death blow to the Aristotelian/Ptolemaic theory came in 1609. In that year, Galileo started observing the night sky with a telescope, which had just been invented. When he looked at the planet Jupiter, Galileo found that it was accompanied by several small satellites or moons that orbited around it. This implied that everything did not have to orbit directly around the earth, as Aristotle and Ptolemy had thought. (It was, of course, still possible to believe that the earth was stationary at the center of the universe and that the moons of Jupiter moved on extremely complicated paths around the earth, giving the appearance that they orbited Jupiter. However, Copernicus’s theory was much simpler.) At the same time, Johannes Kepler had modified Copernicus’s theory, suggesting that the planets moved not in circles but in ellipses (an ellipse is an elongated circle). The predictions now finally matched the observations.

As far as Kepler was concerned, elliptical orbits were merely an ad hoc hypothesis, and a rather repugnant one at that, because ellipses were clearly less perfect than circles. Having discovered almost by accident that elliptical orbits fit the observations well, he could not reconcile them with his idea that the planets were made to orbit the sun by magnetic forces. An explanation was provided only much later, in 1687, when Sir Isaac Newton published his Philosophiae Naturalis Principia Mathematica, probably the most important single work ever published in the physical sciences. In it Newton not only put forward a theory of how bodies move in space and time, but he also developed the complicated mathematics needed to analyze those motions. In addition, Newton postulated a law of universal gravitation according to which each body in the universe was attracted toward every other body by a force that was stronger the more massive the bodies and the closer they were to each other. It was this same force that caused objects to fall to the ground. (The story that Newton was inspired by an apple hitting his head is almost certainly apocryphal. All Newton himself ever said was that the idea of gravity came to him as he sat “in a contemplative mood” and “was occasioned by the fall of an apple.”) Newton went on to show that, according to his law, gravity causes the moon to move in an elliptical orbit around the earth and causes the earth and the planets to follow elliptical paths around the sun.

The Copernican model got rid of Ptolemy’s celestial spheres, and with them, the idea that the universe had a natural boundary. Since “fixed stars” did not appear to change their positions apart from a rotation across the sky caused by the earth spinning on its axis, it became natural to suppose that the fixed stars were objects like our sun but very much farther away.

Newton realized that, according to his theory of gravity, the stars should attract each other, so it seemed they could not remain essentially motionless. Would they not all fall together at some point? In a letter in 1691 to Richard Bentley, another leading thinker of his day, Newton argued that his would indeed happen if there were only a finite number of stars distributed over a finite region of space. But he reasoned that if, on the other hand, there were an infinite number of stars, distributed more or less uniformly over infinite space, this would not happen, because there would not be any central point for them to fall to.

This argument is an instance of the pitfalls that you can encounter in talking about infinity. In an infinite universe, every point can be regarded as the center, because every point has an infinite number of stars on each side of it. The correct approach, it was realized only much later, is to consider the finite situation, in which the stars all fall in on each other, and then to ask how things change if one adds more stars roughly uniformly distributed outside this region. According to Newton’s law, the extra stars would make no difference at all to the original ones on average, so the stars would fall in just as fast. We can add as many stars as we like, but they will still always collapse in on themselves. We now know it is impossible to have an infinite static model of the universe in which gravity is always attractive.

It is an interesting reflection on the general climate of thought before the twentieth century that no one had suggested that the universe was expanding or contracting. It was generally accepted that either the universe had existed forever in an unchanging state, or that it had been created at a finite time in the past more or less as we observe it today. In part this may have been due to people’s tendency to believe in eternal truths, as well as the comfort they found in the thought that even though they may grow old and die, the universe is eternal and unchanging.

Even those who realized that Newton’s theory of gravity showed that the universe could not be static did not think to suggest that it might be expanding. Instead, they attempted to modify the theory by making the gravitational force repulsive at very large distances. This did not significantly affect their predictions of the motions of the planets, but it allowed an infinite distribution of stars to remain in equilibrium–with the attractive forces between nearby stars balanced by the repulsive forces from those that were farther away. However, we now believe such an equilibrium would be unstable: if the stars in some region got only slightly nearer each other, the attractive forces between them would become stronger and dominate over the repulsive forces so that the stars would continue to fall toward each other. On the other hand, if the stars got a bit farther away from each other, the repulsive forces would dominate and drive them farther apart.

Another objection to an infinite static universe is normally ascribed to the German philosopher Heinrich Olbers, who wrote about this theory in 1823. In fact, various contemporaries of Newton had raised the problem, and the Olbers article was not even the first to contain plausible arguments against it. It was, however, the first to be widely noted. The difficulty is that in an infinite static universe nearly every line of sight would end on the surface of a star. Thus one would expect that the whole sky would be as bright as the sun, even at night. Olbers’s counterargument was that the light from distant stars would be dimmed by absorption by intervening matter. However, if that happened the intervening matter would eventually heat up until it glowed as brightly as the stars. The only way of avoiding the conclusion that the whole of the night sky should be as bright as the surface of the sun would be to assume that the stars had not been shining forever but had turned on at some finite time in the past. In that case the absorbing matter might not have heated up yet or the light from distant stars might not yet have reached us. And that brings us to the question of what could have caused the stars to have turned on in the first place.

The beginning of the universe had, of course, been discussed long before this. According to a number of early cosmologies and the Jewish/Christian/Muslim tradition, the universe started at a finite, and not very distant, time in the past. One argument for such a beginning was the feeling that it was necessary to have “First Cause” to explain the existence of the universe. (Within the universe, you always explained one event as being caused by some earlier event, but the existence of the universe itself could be explained in this way only if it had some beginning.) Another argument was put forward by St. Augustine in his book The City of God. He pointed out that civilization is progressing and we remember who performed this deed or developed that technique. Thus man, and so also perhaps the universe, could not have been around all that long. St. Augustine accepted a date of about 5000 B.C. for the Creation of the universe according to the book of Genesis. (It is interesting that this is not so far from the end of the last Ice Age, about 10,000 B.C., which is when archaeologists tell us that civilization really began.)

Aristotle, and most of the other Greek philosophers, on the other hand, did not like the idea of a creation because it smacked too much of divine intervention. They believed, therefore, that the human race and the world around it had existed, and would exist, forever. The ancients had already considered the argument about progress described above, and answered it by saying that there had been periodic floods or other disasters that repeatedly set the human race right back to the beginning of civilization.

Read More Show Less

Table of Contents

Foreword
Ch. 1 Our Picture of the Universe 1
Ch. 2 Space and Time 15
Ch. 3 The Expanding Universe 37
Ch. 4 The Uncertainty Principle 55
Ch. 5 Elementary Particles and the Forces of Nature 65
Ch. 6 Black Holes 83
Ch. 7 Black Holes Ain't So Black 103
Ch. 8 The Origin and Fate of the Universe 119
Ch. 9 The Arrow of Time 147
Ch. 10 Wormholes and Time Travel 159
Ch. 11 The Unification of Physics 171
Ch. 12 Conclusion 187
Albert Einstein 192
Galileo Galilei 194
Isaac Newton 196
Glossary 199
Acknowledgments 205
Index 207
Read More Show Less

Customer Reviews

Average Rating 4.5
( 152 )
Rating Distribution

5 Star

(99)

4 Star

(32)

3 Star

(12)

2 Star

(3)

1 Star

(6)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
See All Sort by: Showing 1 – 20 of 152 Customer Reviews
  • Posted August 5, 2010

    more from this reviewer

    Such a great mind

    When I started reading this book, I thought there is no way in the world I will be able to understand one of the greatest minds in physics today. How wrong I was! Dr. Hawking makes complicated theory understandable for the rest of us. This is a fascinating book that I would recommend to everyone.

    17 out of 17 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 24, 2008

    Most Impressive

    Hawkings brings to life the wonder of science in a language that anyone can understand. We need more books like this.

    15 out of 15 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 14, 2011

    Great, Quick, Comprehensive Read

    Throughout his book, Stephen Hawking presents his outstanding observations and beliefs of the physics of our universe. Hawking presents information on the history of the universe, motion of the universe and most exhilarating of all, black holes. He includes his perception and opinions of the universe and its past as well as the physics acting upon it as time passes He presents the writing in reasonable short chapters that help you understand him and all of his reasoning as well as the tons of background information that he has researched and drawn his observations from. I would recommend this as a read for anyone that has even a slight interest in astronomy and the cosmos. Stephen Hawking teaches you about simple and general astronomy and from that draws major theories that are constantly changing as we learn more about our universe through technological innovations. There are many pages that will have to be read multiple times before you can really understand what he is even talking about. This isn't really a book that you can skim through or you are bound to miss something vital to the theory of relativity or some function of quantum physics. Since it is so thorough, unlike some books, you WILL put it down. Chances are, you'll throw it down in frustration with Hawking, but you will be rewarded in the end when you realize how blatantly he put some of the most complex thoughts and information accessible to humans. I enjoyed Hawkings sense of humor and voice in his writing. Before I read this book, physics seemed extremely dry and boring but he adds humor and feeling and made me captivated by concepts. I felt like I was sitting in a classroom while I read this, hearing the teachers voice rambling on and on and on about something I didn't really care about until he cracked a joke that I just caught through the blur of boredom. I let out a little chuckle and grin then realize that the subject is exhilarating and fun. I had no dislike from this book, just shock and awe of a new subject that I knew very little about. Irate this book overall, four stars out five because I do not think this book is for everyone, but I loved it and believe that many people could capture some of the ideas in the writing and be surprised with an epiphany of your surroundings and how miniscule we are in the universe and how much else is out there in time and space.

    14 out of 15 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 17, 2009

    A Brief History of time is a good read

    I am in 8th grade and got this book recommended to me by my teachers. It is an informative book but you need to have a fairly high reading level to understand some parts of it.This book also answers a lot of the questions I had. All in all, it is a good book.

    10 out of 13 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted February 11, 2004

    Perfect for those who have no background in astrophysics, even better for those that do!

    I am 14 and I have a passion for astrophysics. I knew a lot of facts about which the book is talking about, but I had chaos in my head. Mr. Hawking brought peace and order. This book is amazing in 2 major things: 1) It guides the reader through a vast topic that is flooding with unrelated information in a smooth and orederly way. 2) He describes super-hard concepts in an amazingly simple manner so that almost everyone can understand the General Theory of Relativity having but a little understannding of physics. I reccommend this book for those that are interested in astrophysics and especially for those that simply want to get the answer to those basic standard questions (How did universe began?).

    9 out of 10 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted November 25, 2007

    A reviewer

    Many years after its initial release, this book is still a great pleasure to read. Written in a conversational tone, much of it is probably readily understandable to most readers. However, some parts of it, especially toward the end, aren't exactly simple by any means. Any curious reader, even if not particularly interested in physics or astronomy, will find this little book to be a gem. An extra treat is a few pages at the end describing prominent events from the lives of Einstein, Galileo, and Newton. Highly recommended read.

    6 out of 6 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 21, 2000

    Great Book

    Excellent for everyone with an interest in how we came about being here today. No need to have an advanced degree in physics or mathematics to understand this book. If you're interested enough to be reading this review, you should buy the book -- you will not be sorry.

    6 out of 6 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted July 14, 2002

    Hawking Does It Again.

    Stephen Hawking, One of the World's most brilliant men, has published this incredible piece of literature. His writings are so precise, yet comprehendable by all. His explanation of the Big Bang theory is brilliant, as is any other theory in this book. I highly recommend that you buy this book, because it is worth it.

    5 out of 5 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 9, 2012

    Stephen Hawking¿s A Brief History of Time is a mind-boggling se

    Stephen Hawking’s A Brief History of Time is a mind-boggling series of facts and theories. From his explanation of the big bang, black holes, and relativity, everything in the book is explained thoroughly so that more simplistic minds than that of Stephen Hawking’s can understand. I really liked how he explained different factors of why our universe exists the way it does and how it would be if some factors were changed. His explanation of relativity was also quite impressive to me because of the real life examples Hawking provided to the reader. Don’t get me wrong, this book is very complex and difficult to understand. I found myself having to re-read certain sections of the book just to make sure I was understanding what I was reading. People who are interested in science, math, or physics should definitely keep an open mind about reading this book. People with minimal focus towards scientific theory or math should pass this one up. Hawking takes the time to explain every little thing with great detail. Even though this book is around 180 pages, it is not a quick read. People without much free time should not read this book. Since I am only 15, it is impossible for me to completely understand quantum mechanics or complex theories. There is a very helpful glossary in the back of the book though. I highly recommend other scientific books about space and time if one enjoyed reading this one. Stephen Hawking’s mind is to brilliant, that he can simplify complex theories and ideas so that people like me can completely understand what he is talking about. His mind soars beyond what is comprehensive about the universe that we live in. I give this book a ¿.

    4 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 14, 2012

    g b bbnvnbC

    What the heck

    2 out of 34 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted September 10, 2011

    Best work EVER!!!!

    I love it!! It's so easy to read!!!!

    2 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted February 23, 2010

    A Brief History of Time

    I am a sophomore in high school and read this book for a physics project. Overall, I was very pleased with the book because it explains and describes thoroughly. It is a harder read though, so I would not recommend this to a person with weak reading skills. If you are a strong reader and willing to work to understand some of the content, this book is right up your alley. It is a very interesting and intriguing read and explained the future of the universe nicely. I would seriously recommend it to college students and especially people who are interested in physics and astronomy because I doubt anyone younger or not extremely interested in physics or astronomy will be able to fully grasp all of the concepts and content and enjoy it as it should be. Hawking really understands and enjoys the topics of his writing, and that is apparent throughout the entire book. All in all, this was a very thought provoking book, and I really enjoyed learning more about the universe than I ever thought I would. I just want to say thank you to Stephen Hawking for writing such an awesome new classic to add to my collection.

    2 out of 4 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted June 5, 2008

    Brief History of Time

    All in all, this was definitely one of the better books that I have ever read. There was a lot of interesting information that really made you think, although lots of the material was quite complicated. I enjoyed parts of the book that explained the future of the universe and was glad to know that my own theories match the ones in the book. This is definitely a must read for science lover although I would recommend it for university students if you are expecting to understand all of the content.

    2 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted November 28, 2003

    TOO 'BRIEF' IN CONTENT

    As a professor in astrophysics I obviously find the field of science and all it holds to be very interesting; however I found this particular book to be amateur in content. This book seems to be geared toward the laymen. Anyone in search of a well written book on the recent advancements of astrophysics and the theoretical physics of time travel should seek other reference material.

    2 out of 17 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted July 28, 2002

    A great book for anyone who wants to know about the universe

    This book has much information packed into it. It is not a book for only physicists though. I really enjoyed it and I am only 14. So if you want to know about all the workings in the universe, buy this book.

    2 out of 3 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted July 28, 2000

    It will change your outlook on life

    I read this book about 2 years ago, and i have not thought about life in the same way ever since. I think it is one of the best books ever written on particle and theoretical physics. It is extremely understandable, enjoyable, and interesting. After reading this book, i became so interested in its subject matter that i have collected an entire bookshelf full of books on related topics.

    2 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 22, 2000

    A great book...

    It is easy reading for most everyone and the reading goes by quickly. The man proves anyone can do anything they want to regardless of any disabilities they may have.

    2 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 27, 2000

    Very Insightful

    A very well done book, put in to an easy to understand format combines to make this text an outstanding piece. Strongly suggested for anyone who looks for a general but firm understanding in the underpinning of what makes our universe tick as time (whatever it may be) passes. If it kept me reading, it will with out a doubt keep you intriuged. Mr. Hawking is a man of exceptional intellect, which is reflected in this book.

    2 out of 2 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 22, 2000

    Quantum Physics for Regular People

    This book was exciting to read because it presented information about the theory of relativity, time travel, black holes,quantum physics, particles and other studies, in an easy and fun to read manner. Stephen W. Hawking gave me the opportunity to study some very complicated and interesting scientific issues in a detailed and precise manner, without boring me with massive formulas, talking down to me, and without jamming me with academic regalia. The author was able to translate complicated scientific theories in a way that makes it easy for 'non-science majors' to understand. His examples are fun and helpful. The results are a much clearer understanding of the world around me, and the space/time continuum. My favorite and the most amazing example was the 'Spin' theory. How can a particle be rotated 720% before it resumes it's original look? Isn't 360% a full rotation? Read it and you will find out! The author explains this phenomenon very clearly in simple terms, with interesting stories and examples. In conclusion I recommend this book to anyone who has ever wondered about light speed, space/time curvature, the theories regarding the expansion of or the implosion of the universe, black holes, gravity, or the BIG BANG theory. This book has it all. Try it!

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 12, 2014

    Have the hard copy when first came out this is a remarable

    Author whose lile few would care to live he reminds me of the sci fi stories one the ship that sang where deformed children just their brains alive would run the space ship or cities a space ship would have not a pilot but a companion for company

    Was this review helpful? Yes  No   Report this review
See All Sort by: Showing 1 – 20 of 152 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)