Brownian Motion and Stochastic Calculus / Edition 2

Paperback (Print)
Buy New
Buy New from BN.com
$46.29
Used and New from Other Sellers
Used and New from Other Sellers
from $24.91
Usually ships in 1-2 business days
(Save 61%)
Other sellers (Paperback)
  • All (15) from $24.91   
  • New (6) from $52.70   
  • Used (9) from $24.91   

Overview

A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore shastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of shastic integration and shastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of shastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.

Read More Show Less

Editorial Reviews

From the Publisher
Second Edition

I. Karatzas and S.E. Shreve

Brownian Motion and Shastic Calculus

"A valuable book for every graduate student studying shastic process, and for those who are interested in pure and applied probability. The authors have done a good job."—MATHEMATICAL REVIEWS

Booknews
For readers familiar with measure-theoretic probability and discrete time processes, who wish to explore stochastic processes in continuous time. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780387976556
  • Publisher: Springer New York
  • Publication date: 8/16/1991
  • Series: Graduate Texts in Mathematics Series , #113
  • Edition description: 2nd Corrected ed. 1998. Corr. 6th printing 2004
  • Edition number: 2
  • Pages: 470
  • Product dimensions: 1.00 (w) x 6.14 (h) x 9.21 (d)

Table of Contents

1 Martingales, Stopping Times, and Filtrations.- 1.1. Shastic Processes and—-Fields.- 1.2. Stopping Times.- 1.3. Continuous-Time Martingales.- A. Fundamental inequalities.- B. Convergence results.- C. The optional sampling theorem.- 1.4. The Doob—Meyer Decomposition.- 1.5. Continuous, Square-Integrable Martingales.- 1.6. Solutions to Selected Problems.- 1.7. Notes.- 2 Brownian Motion.- 2.1. Introduction.- 2.2. First Construction of Brownian Motion.- A. The consistency theorem.- B. The Kolmogorov—?entsov theorem.- 2.3. Second Construction of Brownian Motion.- 2.4. The SpaceC[0,—), Weak Convergence, and Wiener Measure.- A. Weak convergence.- B. Tightness.- C. Convergence of finite-dimensional distributions.- D. The invariance principle and the Wiener measure.- 2.5. The Markov Property.- A. Brownian motion in several dimensions.- B. Markov processes and Markov families.- C. Equivalent formulations of the Markov property.- 2.6. The Strong Markov Property and the Reflection Principle.- A. The reflection principle.- B. Strong Markov processes and families.- C. The strong Markov property for Brownian motion.- 2.7. Brownian Filtrations.- A. Right-continuity of the augmented filtration for a strong Markov process.- B. A “universal” filtration.- C. The Blumenthal zero-one law.- 2.8. Computations Based on Passage Times.- A. Brownian motion and its running maximum.- B. Brownian motion on a half-line.- C. Brownian motion on a finite interval.- D. Distributions involving last exit times.- 2.9. The Brownian Sample Paths.- A. Elementary properties.- B. The zero set and the quadratic variation.- C. Local maxima and points of increase.- D. Nowhere differentiability.- E. Law of the iterated logarithm.- F. Modulus of continuity.- 2.10. Solutions to Selected Problems.- 2.11. Notes.- 3 Shastic Integration.- 3.1. Introduction.- 3.2. Construction of the Shastic Integral.- A. Simple processes and approximations.- B. Construction and elementary properties of the integral.- C. A characterization of the integral.- D. Integration with respect to continuous, local martingales.- 3.3. The Change-of-Variable Formula.- A. The Itô rule.- B. Martingale characterization of Brownian motion.- C. Bessel processes, questions of recurrence.- D. Martingale moment inequalities.- E. Supplementary exercises.- 3.4. Representations of Continuous Martingales in Terms of Brownian Motion.- A. Continuous local martingales as shastic integrals with respect to Brownian motion.- B. Continuous local martingales as time-changed Brownian motions.- C. A theorem of F. B. Knight.- D. Brownian martingales as shastic integrals.- E. Brownian functionals as shastic integrals.- 3.5. The Girsanov Theorem.- A. The basic result.- B. Proof and ramifications.- C. Brownian motion with drift.- D. The Novikov condition.- 3.6. Local Time and a Generalized Itô Rule for Brownian Motion.- A. Definition of local time and the Tanaka formula.- B. The Trotter existence theorem.- C. Reflected Brownian motion and the Skorohod equation.- D. A generalized Itô rule for convex functions.- E. The Engelbert—Schmidt zero-one law.- 3.7. Local Time for Continuous Semimartingales.- 3.8. Solutions to Selected Problems.- 3.9. Notes.- 4 Brownian Motion and Partial Differential Equations.- 4.1. Introduction.- 4.2. Harmonic Functions and the Dirichlet Problem.- A. The mean-value property.- B. The Dirichlet problem.- C. Conditions for regularity.- D. Integral formulas of Poisson.- E. Supplementary exercises.- 4.3. The One-Dimensional Heat Equation.- A. The Tychonoff uniqueness theorem.- B. Nonnegative solutions of the heat equation.- C. Boundary crossing probabilities for Brownian motion.- D. Mixed initial/boundary value problems.- 4.4. The Formulas of Feynman and Kac.- A. The multidimensional formula.- B. The one-dimensional formula.- 4.5. Solutions to selected problems.- 4.6. Notes.- 5 Shastic Differential Equations.- 5.1. Introduction.- 5.2. Strong Solutions.- A. Definitions.- B. The Itô theory.- C. Comparison results and other refinements.- D. Approximations of shastic differential equations.- E. Supplementary exercises.- 5.3. Weak Solutions.- A. Two notions of uniqueness.- B. Weak solutions by means of the Girsanov theorem.- C. A digression on regular conditional probabilities.- D. Results of Yamada and Watanabe on weak and strong solutions.- 5.4. The Martingale Problem of Stroock and Varadhan.- A. Some fundamental martingales.- B. Weak solutions and martingale problems.- C. Well-posedness and the strong Markov property.- D. Questions of existence.- E. Questions of uniqueness.- F. Supplementary exercises.- 5.5. A Study of the One-Dimensional Case.- A. The method of time change.- B. The method of removal of drift.- C. Feller’s test for explosions.- D. Supplementary exercises.- 5.6. Linear Equations.- A. Gauss—Markov processes.- B. Brownian bridge.- C. The general, one-dimensional, linear equation.- D. Supplementary exercises.- 5.7. Connections with Partial Differential Equations.- A. The Dirichlet problem.- B. The Cauchy problem and a Feynman—Kac representation.- C. Supplementary exercises.- 5.8. Applications to Economics.- A. Portfolio and consumption processes.- B. Option pricing.- C. Optimal consumption and investment (general theory).- D. Optimal consumption and investment (constant coefficients).- 5.9. Solutions to Selected Problems.- 5.10. Notes.- 6 P. Lévy’s Theory of Brownian Local Time.- 6.1. Introduction.- 6.2. Alternate Representations of Brownian Local Time.- A. The process of passage times.- B. Poisson random measures.- C. Subordinators.- D. The process of passage times revisited.- E. The excursion and downcrossing representations of local time.- 6.3. Two Independent Reflected Brownian Motions.- A. The positive and negative parts of a Brownian motion.- B. The first formula of D. Williams.- C. The joint density of (W(t), L(t),—
+(t)).- 6.4. Elastic Brownian Motion.- A. The Feynman—Kac formulas for elastic Brownian motion.- B. The Ray—Knight description of local time.- C. The second formula of D. Williams.- 6.5. An Application: Transition Probabilities of Brownian Motion with Two-Valued Drift.- 6.6. Solutions to Selected Problems.- 6.7. Notes.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)