×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Calabi-Yau Varieties and Mirror Symmetry
     

Calabi-Yau Varieties and Mirror Symmetry

by Noriko Yui, James Dominic Lewis
 

ISBN-10: 0821833553

ISBN-13: 9780821833551

Pub. Date: 09/09/2003

Publisher: American Mathematical Society

The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the

Overview

The idea of mirror symmetry originated in physics, but in recent years, the field of mirror symmetry has exploded onto the mathematical scene. It has inspired many new developments in algebraic and arithmetic geometry, toric geometry, the theory of Riemann surfaces, and infinite-dimensional Lie algebras among others. The developments in physics stimulated the interest of mathematicians in Calabi-Yau varieties. This led to the realization that the time is ripe for mathematicians, armed with many concrete examples and alerted by the mirror symmetry phenomenon, to focus on Calabi-Yau varieties and to test for these special varieties some of the great outstanding conjectures, e.g., the modularity conjecture for Calabi-Yau threefolds defined over the rationals, the Bloch-Beilinson conjectures, regulator maps of higher algebraic cycles, Picard-Fuchs differential equations, GKZ hypergeometric systems, and others. The articles in this volume report on current developments. The papers are divided roughly into two categories: geometric methods and arithmetic methods. One of the significant outcomes of the workshop is that we are finally beginning to understand the mirror symmetry phenomenon from the arithmetic point of view, namely, in terms of zeta-functions and L-series of mirror pairs of Calabi-Yau threefolds. The book is suitable for researchers interested in mirror symmetry and string theory.

Product Details

ISBN-13:
9780821833551
Publisher:
American Mathematical Society
Publication date:
09/09/2003
Series:
Fields Institute Communications Series , #38
Pages:
367
Product dimensions:
72.50(w) x 10.25(h) x 1.00(d)

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews