Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Designed for the three-semester engineering calculus sequence, Calculus: Early Transcendental Functions offers fully integrated coverage of exponential, logarithmic, and trigonometric functions throughout the first semester, within the hallmark balanced approach of the Larson team. A rich variety of applications encountered earlier in the course prepares students for concurrent physics, chemistry, and engineering courses. This edition features nearly 10,000 diverse and flexible exercises, carefully graded in sets progressing from skill-development problems to more rigorous application and proof problems.

New!P.S. Problem Solving sections thought-provoking and challenging exercises at the end of each chapter require students to use a variety of problem-solving skills as they work with calculus concepts.

New!Getting at the Concept exercises, boxed and titled for easy reference, check a student's understanding of the basic concepts of each section.

Think About It conceptual exercises require students to use their critical-thinking skills and help them develop an intuitive understanding of the underlying theory of the calculus.

Multi-part Modeling Data questions ask students to find and interpret mathematical models to fit real-life data, often through the use of a graphing utility.

Section Projects, extended applications at the end of selected exercise sets, can be assigned to individual students or used in a collaborative or peer-assisted learning environment.

Writing Exercises help students develop reasoning skills and discuss mathematical concepts.

True or False Exercises in manyexercise sets help students focus on concepts, common errors, and the correct statements of definitions and theorems.

Revised!Review Exercises, now grouped and correlated by text section, provide students with a more effective study tool, enabling them to target the concepts they need to review.

Answers to all odd-numbered exercises are included in the back of the text.

Integrated use of technology (optional and identified by an icon) encourages students to use a graphing utility or computer algebra system as a tool for exploration, discovery, and problem solving.

Interactive Calculus Early Transcendental Functions 3.0 CD-ROM and Internet Calculus Early Transcendental Functions 2.0 web site, referred to in the text by an IC icon, offer enhanced opportunities for exploration and visualization using the program itself and/or a computer algebra system.

CAS Examples, also identified in the text by an icon, offer opportunities for interactive exploration using Maple, Mathcad, Mathematica, or Derive.

Explorations, optional boxed projects, enable students to discover selected concepts on their own, before being exposed to them in the text, making them more likely to remember the results.

Motivating the Chapter, data-driven, chapter-opening applications, explore the concepts to be covered in the chapter in the context of a real-world setting. Following a short introduction, open-ended questions guide the students through an introduction to the main themes of the chapter.

More than 1000 examples in the Third Edition enhance the usefulness of the text as a study tool for all types of learners. Each example is titled for easy reference and many offer detailed solutions, often with annotations, presented graphically, analytically, and/or numerically to provide further insight into mathematical concepts.

Dr. Ron Larson is a professor of mathematics at The Pennsylvania State University, where he has taught since 1970. He received his Ph.D. in mathematics from the University of Colorado and is considered the pioneer of using multimedia to enhance the learning of mathematics, having authored over 30 software titles since 1990. Dr. Larson conducts numerous seminars and in-service workshops for math educators around the country about using computer technology as an instructional tool and motivational aid. He is the recipient of the 2013 Text and Academic Authors Association Award for CALCULUS, the 2012 William Holmes McGuffey Longevity Award for CALCULUS: AN APPLIED APPROACH, the 2011 William Holmes McGuffey Longevity Award for PRECALCULUS: REAL MATHEMATICS, REAL PEOPLE, and the 1996 Text and Academic Authors Association TEXTY Award for INTERACTIVE CALCULUS (a complete text on CD-ROM that was the first mainstream college textbook to be offered on the Internet). Dr. Larson authors numerous textbooks including the best-selling Calculus series published by Cengage Learning.

Dr. Bruce H. Edwards is Professor of Mathematics at the University of Florida. Professor Edwards received his B.S. in Mathematics from Stanford University and his Ph.D. in Mathematics from Dartmouth College. He taught mathematics at a university near BogotÃ¡, Colombia, as a Peace Corps volunteer. While teaching at the University of Florida, Professor Edwards has won many teaching awards, including Teacher of the Year in the College of Liberal Arts and Sciences, Liberal Arts and Sciences Student Council Teacher of the Year, and the University of Florida Honors Program Teacher of the Year. He was selected by the Office of Alumni Affairs to be the Distinguished Alumni Professor for 1991-1993. Professor Edwards has taught a variety of mathematics courses at the University of Florida, from first-year calculus to graduate-level classes in algebra and numerical analysis. He has been a frequent speaker at research conferences and meetings of the National Council of Teachers of Mathematics. He has also coauthored a wide range of award winning mathematics textbooks with Professor Ron Larson.

1. PREPARATION FOR CALCULUS. Graphs and Models. Linear Models and Rates of Change. Functions and Their Graphs. Fitting Models to Data. Inverse Functions. Exponential and Logarithmic Functions. 2. LIMITS AND THEIR PROPERTIES. A Preview of Calculus. Finding Limits Graphically and Numerically. Evaluating Limits Analytically. Continuity and One-Sided Limits. Infinite Limits. Section Project: Graphs and Limits of Trigonometric Functions. 3. DIFFERENTIATION. The Derivative and the Tangent Line Problem. Basic Differentiation Rules and Rates of Change. Product and Quotient Rules and Higher-Order Derivatives. The Chain Rule. Implicit Differentiation. Section Project: Optical Illusions. Derivatives of Inverse Functions. Related Rates. Newton's Method. 4. APPLICATIONS OF DIFFERENTIATION. Extrema on an Interval. Rolle's Theorem and the Mean Value Theorem. Increasing and Decreasing Functions and the First Derivative Test. Section Project: Rainbows. Concavity and the Second Derivative Test. Limits at Infinity. A Summary of Curve Sketching. Optimization Problems. Section Project: Connecticut River. Differentials. 5. INTEGRATION. Antiderivatives and Indefinite Integration. Area. Riemann Sums and Definite Integrals. The Fundamental Theorem of Calculus. Section Project: Demonstrating the Fundamental Theorem. Integration by Substitution. Numerical Integration. The Natural Logarithmic Function: Integration. Inverse Trigonometric Functions: Integration. Hyperbolic Functions. Section Project: St. Louis Arch. 6. DIFFERENTIAL EQUATIONS. Slope Fields and Euler's Method. Differential Equations: Growth and Decay. Differential Equations: Separation of Variables. The Logistic Equation. First-Order Linear Differential Equations. Section Project: Weight Loss. Predator-Prey Differential Equations. 7. APPLICATIONS OF INTEGRATION. Area of a Region Between Two Curves. Volume: The Disk Method. Volume: The Shell Method. Section Project: Saturn. Arc Length and Surfaces of Revolution. Work. Section Project: Tidal Energy. Moments, Centers of Mass, and Centroids. Fluid Pressure and Fluid Force. 8. Integration Techniques, L'HÃ´pital's Rule, and Improper Integrals. Basic Integration Rules. Integration by Parts. Trigonometric Integrals. Section Project: Power Lines. Trigonometric Substitution. Partial Fractions. Integration by Tables and Other Integration Techniques. Indeterminate Forms and L'HÃ´pital's Rule. Improper Integrals. 9. INFINITE SERIES. Sequences. Series and Convergence. Section Project: Cantor's Disappearing Table. The Integral Test and p-Series. Section Project: The Harmonic Series. Comparisons of Series. Section Project: Solera Method. Alternating Series. The Ratio and Root Tests. Taylor Polynomials and Approximations. Power Series. Representation of Functions by Power Series. Taylor and Maclaurin Series. 10. CONICS, PARAMETRIC EQUATIONS, AND POLAR COORDINATES. Conics and Calculus. Plane Curves and Parametric Equations. Section Projects: Cycloids. Parametric Equations and Calculus. Polar Coordinates and Polar Graphs. Section Project: Anamorphic Art. Area and Arc Length in Polar Coordinates. Polar Equations of Conics and Kepler's Laws. 11. VECTORS AND THE GEOMETRY OF SPACE. Vectors in the Plane. Space Coordinates and Vectors in Space. The Dot Product of Two Vectors. The Cross Product of Two Vectors in Space. Lines and Planes in Space. Section Project: Distances in Space. Surfaces in Space. Cylindrical and Spherical Coordinates. 12. VECTOR-VALUED FUNCTIONS. Vector-Valued Functions. Section Project: Witch of Agnesi. Differentiation and Integration of Vector-Valued Functions. Velocity and Acceleration. Tangent Vectors and Normal Vectors. Arc Length and Curvature. 13. FUNCTIONS OF SEVERAL VARIABLES. Introduction to Functions of Several Variables. Limits and Continuity. Partial Derivatives. Section Project: Moire Fringes. Differentials. Chain Rules for Functions of Several Variables. Directional Derivatives and Gradients. Tangent Planes and Normal Lines. Section Project: Wildflowers. Extrema of Functions of Two Variables. Applications of Extrema of Functions of Two Variables. Section Project: Building a Pipeline. Lagrange Multipliers. 14. MULTIPLE INTEGRATION. Iterated Integrals and Area in the Plane. Double Integrals and Volume. Change of Variables: Polar Coordinates. Center of Mass and Moments of Inertia. Section Project: Center of Pressure on a Sail. Surface Area. Section Project: Capillary Action. Triple Integrals and Applications. Triple Integrals in Cylindrical and Spherical Coordinates. Section Project: Wrinkled and Bumpy Spheres. Change of Variables: Jacobians. 15. VECTOR ANALYSIS. Vector Fields. Line Integrals. Conservative Vector Fields and Independence of Path. Green's Theorem. Section Project: Hyperbolic and Trigonometric Functions. Parametric Surfaces. Surface Integrals. Section Project: Hyperboloid of One Sheet. Divergence Theorem. Stoke's Theorem.

Our reader reviews allow you to share your comments on titles you liked,
or didn't, with others. By submitting an online review, you are representing to
Barnes & Noble.com that all information contained in your review is original
and accurate in all respects, and that the submission of such content by you
and the posting of such content by Barnes & Noble.com does not and will not
violate the rights of any third party. Please follow the rules below to help
ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer.
However, we cannot allow persons under the age of 13 to have accounts at BN.com or
to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the
information on the product page, please send us an email.

Reviews should not contain any of the following:

- HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone

- Time-sensitive information such as tour dates, signings, lectures, etc.

- Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.

- Comments focusing on the author or that may ruin the ending for others

- Phone numbers, addresses, URLs

- Pricing and availability information or alternative ordering information

- Advertisements or commercial solicitation

Reminder:

- By submitting a review, you grant to Barnes & Noble.com and its
sublicensees the royalty-free, perpetual, irrevocable right and license to use the
review in accordance with the Barnes & Noble.com Terms of Use.

- Barnes & Noble.com reserves the right not to post any review -- particularly
those that do not follow the terms and conditions of these Rules. Barnes & Noble.com
also reserves the right to remove any review at any time without notice.

- See Terms of Use for other conditions and disclaimers.

Search for Products You'd Like to Recommend

Create a Pen Name

Welcome, penname

You have successfully created your Pen Name. Start enjoying the benefits of the BN.com Community today.

Anonymous

Posted December 15, 2000

An outstanding book

I would like all of you to enjoy the excitements in discovering calculus when you read this excellent calculus book. This is one of the best Calculus textbooks that I have seen.

Was this review helpful? YesNoThank you for your feedback.Report this reviewThank you, this review has been flagged.

Anonymous

Posted December 7, 2010

No text was provided for this review.

Anonymous

Posted May 27, 2013

No text was provided for this review.

Anonymous

Posted January 31, 2012

No text was provided for this review.

Anonymous

Posted January 5, 2011

No text was provided for this review.

Anonymous

Posted December 23, 2011

No text was provided for this review.

Anonymous

Posted January 13, 2011

No text was provided for this review.

Anonymous

Posted May 5, 2011

No text was provided for this review.

Anonymous

Posted September 1, 2010

No text was provided for this review.

Anonymous

Posted January 23, 2013

No text was provided for this review.

If you find inappropriate content, please report it to Barnes & Noble

## More About This Textbook

## Overview

Calculus: Early Transcendental Functionsoffers fully integrated coverage of exponential, logarithmic, and trigonometric functions throughout the first semester, within the hallmark balanced approach of the Larson team. A rich variety of applications encountered earlier in the course prepares students for concurrent physics, chemistry, and engineering courses. This edition features nearly 10,000 diverse and flexible exercises, carefully graded in sets progressing from skill-development problems to more rigorous application and proof problems.New!P.S. Problem Solvingsections thought-provoking and challenging exercises at the end of each chapter require students to use a variety of problem-solving skills as they work with calculus concepts.New!Getting at the Conceptexercises, boxed and titled for easy reference, check a student's understanding of the basic concepts of each section.Think About Itconceptual exercises require students to use their critical-thinking skills and help them develop an intuitive understanding of the underlying theory of the calculus.Modeling Dataquestions ask students to find and interpret mathematical models to fit real-life data, often through the use of a graphing utility.Section Projects,extended applications at the end of selected exercise sets, can be assigned to individual students or used in a collaborative or peer-assisted learning environment.Writing Exerciseshelp students develop reasoning skills and discuss mathematical concepts.True or False Exercisesin manyexercise sets help students focus on concepts, common errors, and the correct statements of definitions and theorems.Revised!Review Exercises,now grouped and correlated by text section, provide students with a more effective study tool, enabling them to target the concepts they need to review.Interactive Calculus Early Transcendental Functions 3.0 CD-ROMandInternet Calculus Early Transcendental Functions 2.0web site, referred to in the text by an IC icon, offer enhanced opportunities for exploration and visualization using the program itself and/or a computer algebra system.CAS Examples,also identified in the text by an icon, offer opportunities for interactive exploration using Maple, Mathcad, Mathematica, or Derive.Explorations,optional boxed projects, enable students to discover selected concepts on their own, before being exposed to them in the text, making them more likely to remember the results.Motivating the Chapter,data-driven, chapter-opening applications, explore the concepts to be covered in the chapter in the context of a real-world setting. Following a short introduction, open-ended questions guide the students through an introduction to the main themes of the chapter.## Product Details

## Related Subjects

## Meet the Author

Dr. Ron Larson is a professor of mathematics at The Pennsylvania State University, where he has taught since 1970. He received his Ph.D. in mathematics from the University of Colorado and is considered the pioneer of using multimedia to enhance the learning of mathematics, having authored over 30 software titles since 1990. Dr. Larson conducts numerous seminars and in-service workshops for math educators around the country about using computer technology as an instructional tool and motivational aid. He is the recipient of the 2013 Text and Academic Authors Association Award for CALCULUS, the 2012 William Holmes McGuffey Longevity Award for CALCULUS: AN APPLIED APPROACH, the 2011 William Holmes McGuffey Longevity Award for PRECALCULUS: REAL MATHEMATICS, REAL PEOPLE, and the 1996 Text and Academic Authors Association TEXTY Award for INTERACTIVE CALCULUS (a complete text on CD-ROM that was the first mainstream college textbook to be offered on the Internet). Dr. Larson authors numerous textbooks including the best-selling Calculus series published by Cengage Learning.

Dr. Bruce H. Edwards is Professor of Mathematics at the University of Florida. Professor Edwards received his B.S. in Mathematics from Stanford University and his Ph.D. in Mathematics from Dartmouth College. He taught mathematics at a university near BogotÃ¡, Colombia, as a Peace Corps volunteer. While teaching at the University of Florida, Professor Edwards has won many teaching awards, including Teacher of the Year in the College of Liberal Arts and Sciences, Liberal Arts and Sciences Student Council Teacher of the Year, and the University of Florida Honors Program Teacher of the Year. He was selected by the Office of Alumni Affairs to be the Distinguished Alumni Professor for 1991-1993. Professor Edwards has taught a variety of mathematics courses at the University of Florida, from first-year calculus to graduate-level classes in algebra and numerical analysis. He has been a frequent speaker at research conferences and meetings of the National Council of Teachers of Mathematics. He has also coauthored a wide range of award winning mathematics textbooks with Professor Ron Larson.

## Table of Contents

1. PREPARATION FOR CALCULUS. Graphs and Models. Linear Models and Rates of Change. Functions and Their Graphs. Fitting Models to Data. Inverse Functions. Exponential and Logarithmic Functions. 2. LIMITS AND THEIR PROPERTIES. A Preview of Calculus. Finding Limits Graphically and Numerically. Evaluating Limits Analytically. Continuity and One-Sided Limits. Infinite Limits. Section Project: Graphs and Limits of Trigonometric Functions. 3. DIFFERENTIATION. The Derivative and the Tangent Line Problem. Basic Differentiation Rules and Rates of Change. Product and Quotient Rules and Higher-Order Derivatives. The Chain Rule. Implicit Differentiation. Section Project: Optical Illusions. Derivatives of Inverse Functions. Related Rates. Newton's Method. 4. APPLICATIONS OF DIFFERENTIATION. Extrema on an Interval. Rolle's Theorem and the Mean Value Theorem. Increasing and Decreasing Functions and the First Derivative Test. Section Project: Rainbows. Concavity and the Second Derivative Test. Limits at Infinity. A Summary of Curve Sketching. Optimization Problems. Section Project: Connecticut River. Differentials. 5. INTEGRATION. Antiderivatives and Indefinite Integration. Area. Riemann Sums and Definite Integrals. The Fundamental Theorem of Calculus. Section Project: Demonstrating the Fundamental Theorem. Integration by Substitution. Numerical Integration. The Natural Logarithmic Function: Integration. Inverse Trigonometric Functions: Integration. Hyperbolic Functions. Section Project: St. Louis Arch. 6. DIFFERENTIAL EQUATIONS. Slope Fields and Euler's Method. Differential Equations: Growth and Decay. Differential Equations: Separation of Variables. The Logistic Equation. First-Order Linear Differential Equations. Section Project: Weight Loss. Predator-Prey Differential Equations. 7. APPLICATIONS OF INTEGRATION. Area of a Region Between Two Curves. Volume: The Disk Method. Volume: The Shell Method. Section Project: Saturn. Arc Length and Surfaces of Revolution. Work. Section Project: Tidal Energy. Moments, Centers of Mass, and Centroids. Fluid Pressure and Fluid Force. 8. Integration Techniques, L'HÃ´pital's Rule, and Improper Integrals. Basic Integration Rules. Integration by Parts. Trigonometric Integrals. Section Project: Power Lines. Trigonometric Substitution. Partial Fractions. Integration by Tables and Other Integration Techniques. Indeterminate Forms and L'HÃ´pital's Rule. Improper Integrals. 9. INFINITE SERIES. Sequences. Series and Convergence. Section Project: Cantor's Disappearing Table. The Integral Test and p-Series. Section Project: The Harmonic Series. Comparisons of Series. Section Project: Solera Method. Alternating Series. The Ratio and Root Tests. Taylor Polynomials and Approximations. Power Series. Representation of Functions by Power Series. Taylor and Maclaurin Series. 10. CONICS, PARAMETRIC EQUATIONS, AND POLAR COORDINATES. Conics and Calculus. Plane Curves and Parametric Equations. Section Projects: Cycloids. Parametric Equations and Calculus. Polar Coordinates and Polar Graphs. Section Project: Anamorphic Art. Area and Arc Length in Polar Coordinates. Polar Equations of Conics and Kepler's Laws. 11. VECTORS AND THE GEOMETRY OF SPACE. Vectors in the Plane. Space Coordinates and Vectors in Space. The Dot Product of Two Vectors. The Cross Product of Two Vectors in Space. Lines and Planes in Space. Section Project: Distances in Space. Surfaces in Space. Cylindrical and Spherical Coordinates. 12. VECTOR-VALUED FUNCTIONS. Vector-Valued Functions. Section Project: Witch of Agnesi. Differentiation and Integration of Vector-Valued Functions. Velocity and Acceleration. Tangent Vectors and Normal Vectors. Arc Length and Curvature. 13. FUNCTIONS OF SEVERAL VARIABLES. Introduction to Functions of Several Variables. Limits and Continuity. Partial Derivatives. Section Project: Moire Fringes. Differentials. Chain Rules for Functions of Several Variables. Directional Derivatives and Gradients. Tangent Planes and Normal Lines. Section Project: Wildflowers. Extrema of Functions of Two Variables. Applications of Extrema of Functions of Two Variables. Section Project: Building a Pipeline. Lagrange Multipliers. 14. MULTIPLE INTEGRATION. Iterated Integrals and Area in the Plane. Double Integrals and Volume. Change of Variables: Polar Coordinates. Center of Mass and Moments of Inertia. Section Project: Center of Pressure on a Sail. Surface Area. Section Project: Capillary Action. Triple Integrals and Applications. Triple Integrals in Cylindrical and Spherical Coordinates. Section Project: Wrinkled and Bumpy Spheres. Change of Variables: Jacobians. 15. VECTOR ANALYSIS. Vector Fields. Line Integrals. Conservative Vector Fields and Independence of Path. Green's Theorem. Section Project: Hyperbolic and Trigonometric Functions. Parametric Surfaces. Surface Integrals. Section Project: Hyperboloid of One Sheet. Divergence Theorem. Stoke's Theorem.