Catharsis: On the Art of Medicine

Paperback (Print)
Buy New
Buy New from BN.com
$9.64
Used and New from Other Sellers
Used and New from Other Sellers
from $1.99
Usually ships in 1-2 business days
(Save 84%)
Other sellers (Paperback)
  • All (15) from $1.99   
  • New (4) from $7.74   
  • Used (11) from $1.99   

Overview

The ancient Greeks used the term catharsis for the cleansing of both the body by medicine and the soul by art. In this inspiring book, internationally renowned cardiologist Andrzej Szczeklik draws deeply on our humanistic heritage to describe the artistry and the mystery of being a doctor. Moving between examples ancient and contemporary, mythological and scientific, Catharsis explores how medicine and art share common roots and pose common challenge.

As Szczeklik explores such subjects as the mysteries of the heart rhythm, the secret history of pain relief, the enigmatic logic of epidemics, near-death or out-of-body experiences, and many more, he skillfully weaves together classical literature, the history of medicine, and moving anecdotes from his own clinical experiences. The result is a life-affirming book that will enrich the healing work of patients and doctors alike and make an invaluable contribution to our still-expanding vision of the art of medicine.

“Drawing on mathematical ideas, physics, music, mythology, clinical science and clinical practice, Szczeklik never forces the issues or compels. . . . He approaches the questions of pain, suffering and death that confront the doctor daily and that the world regards as ‘terrible, futile, and destructive.’ Here he stresses the immense value of the experienced doctor in helping patients in the loneliness of pain.”—Niall O'Higgins, Times Higher Education Supplement

Read More Show Less

Editorial Reviews

Library Journal
This little book is neither a history of medicine, nor is it a philosophical or bioethical textbook-it is all of this and more. Renowned Polish cardiologist Szczeklik ponders the state of medicine from its earliest days through the present. He discusses some of the long-debated philosophical questions: modern man's quest for eternal youth, the meaning of life, and what constitutes "self." He also looks at recent medical breakthroughs, such as the mapping of the human genome; the HapMap Project, an international effort to identify and catalog genetic similarities and differences in human beings; and therapeutic cloning. Throughout, he uses classical mythology, literature, and history to put modern medicine into perspective and to demonstrate the power and magic that exists between a doctor and his/her patient. Szczeklik does a convincing job of showing us how, despite modern technology, medicine is still as much an art as it is a science. The general public will enjoy the journey through the mind of this renaissance thinker, and instructors will find plenty of topics for class discussions. A real gem, this book is highly recommended for public and academic libraries.-Tina Neville, Univ. of South Florida at St. Petersburg Lib. Copyright 2005 Reed Business Information.
Times Higher Education Supplement
Drawing on mathematical ideas, physics, music, mythology, clinical science and clinical practice, Szczeklik never forces the issues or compels. He treads lightly. He reminds and explains. He draws attention to details of physiology that can be explained and those that remain mysterious. He shifts gears effortlessly between the known and the mysterious. . . . He approaches the questions of pain, suffering and death that confront the doctor daily and that the world regards as "terrible, futile and destructive". Here he stresses the immense value of the experienced doctor in helping patients in the loneliness of pain. . . . The kathartai, forerunners of doctors in pre-Hippocratic Greece, were said to purify the soul by the soothing and calming combination of music, dance, poetry and song. Szczeklik is in tune with them.”

— Niall O'Higgins

British Medical Journal
This is a book about the soul of medicine—and about the relationship of medicine to science. . . . It is medicine not as audited technical expertise but as an art as old as human suffering—and therefore as old as humanity itself. I know nothing about the author . . . but I suspect he was a Renaissance polymath in another life. And whoever translated him into English is clearly the Seamus Heaney of Eastern Europe, because every sentence resonates.

— Kevin Barraclough

American Journal of Cardiology
Szczeklik foregrounds medicine as a skill derived from magic in which art and science are inseparably woven into a seamless fabric that dissolves traditional boundaries. The book provides contemporary physicians with access to humanistic sources that are the wellspring of their profession and provides humanists with biomedical sources to which they have unwittingly but materially contributed.

— Joseph Perloff

Canadian Medical Association Journal
Balancing titans, heroes, medical history and individual accounts is tough to pull off, but the author manages a unique, even poetic synthesis. . . . A thoughtful expression of a life dedicated to medicine.

— Dorian Deshauer

Times Higher Education Supplement - Niall O'Higgins
“Drawing on mathematical ideas, physics, music, mythology, clinical science and clinical practice, Szczeklik never forces the issues or compels. He treads lightly. He reminds and explains. He draws attention to details of physiology that can be explained and those that remain mysterious. He shifts gears effortlessly between the known and the mysterious. . . . He approaches the questions of pain, suffering and death that confront the doctor daily and that the world regards as "terrible, futile and destructive". Here he stresses the immense value of the experienced doctor in helping patients in the loneliness of pain. . . . The kathartai, forerunners of doctors in pre-Hippocratic Greece, were said to purify the soul by the soothing and calming combination of music, dance, poetry and song. Szczeklik is in tune with them.”
British Medical Journal - Kevin Barraclough
"This is a book about the soul of medicine—and about the relationship of medicine to science. . . . It is medicine not as audited technical expertise but as an art as old as human suffering—and therefore as old as humanity itself. I know nothing about the author . . . but I suspect he was a Renaissance polymath in another life. And whoever translated him into English is clearly the Seamus Heaney of Eastern Europe, because every sentence resonates."
American Journal of Cardiology - Joseph Perloff
"Szczeklik foregrounds medicine as a skill derived from magic in which art and science are inseparably woven into a seamless fabric that dissolves traditional boundaries. The book provides contemporary physicians with access to humanistic sources that are the wellspring of their profession and provides humanists with biomedical sources to which they have unwittingly but materially contributed."
Canadian Medical Association Journal - Dorian Deshauer
"Balancing titans, heroes, medical history and individual accounts is tough to pull off, but the author manages a unique, even poetic synthesis. . . . A thoughtful expression of a life dedicated to medicine."
Read More Show Less

Product Details

  • ISBN-13: 9780226788685
  • Publisher: University of Chicago Press
  • Publication date: 5/15/2007
  • Edition description: New Edition
  • Pages: 174
  • Product dimensions: 5.50 (w) x 8.50 (h) x 0.50 (d)

Meet the Author

Andrzej Szczeklik is professor in and chair of the Department of Medicine in the School of Medicine at the Jagiellonian University, Poland. For his scientific contributions to the study of asthma and myocardial infarction, he has received awards from the Royal College of Physicians, the Lancet, and the Foundation for Polish Science. Antonia Lloyd-Jones is a translator of Polish literature whose recent works include Mercedes Benz, a novel by Pawel Huelle, and In the Garden of Memory, a family biography by Joanna Olczak-Ronikier.

Read More Show Less

Read an Excerpt

Catharsis

On the Art of Medicine
By Andrzej Szczeklik

University of Chicago Press

Copyright © 2005 University of Chicago
All right reserved.

ISBN: 0-226-78869-5


Chapter One

The Rhythm of the Heart

The world around us is overflowing with rhythms. We are always coming into contact with them, from the moment we are born. The rocking of the cradle and the singing that goes with it are both rhythms; so are the flash of a lighthouse beam and the roar of waves crashing against the shore, the rattle of a train and the croaking of frogs by the tracks. The world's rhythms pervade us, bringing in their own meter and stirring a response. Among primitive peoples rhythm is associated with the beginning of life. On the Polynesian islands a god molded a figurine of woman-as-the-mother out of clay and then danced before her for three days and three nights. Drums accelerated the rhythm, while with every movement of his dancing body he implored and incited her. Until finally-as Czeslaw Milosz writes-matter could no longer maintain its own inertia. The first shudder of rhythm ran through the figurine, waking her from an ageless sleep. Her first response was shy: she stuck out one knee, testing to see if she were really made of something other than earth.

Or maybe the rhythm beaten out on the drums came from deep inside the universe? Was it perhaps aroused by signals flowing frominterstellar space, steady and regular, emerging from inside rapidly rotating colossi that make our sun look like a speck of dust? Known as neutron stars, these gigantic concentrations of matter, the sources of powerful magnetic and gravitational fields, send radio waves of great intensity into the universe-and to us as well. They are typically so perfectly regular that the centers where they arise are called pulsars. So is it impossible to imagine that the pulsars imposed their rhythm on the beating drums, and that the first pulse of blood that ran through man, stirring him into life, was a response to their rhythm? Was the human pulse set off by the pulsars of the universe?

It is not just the world that sends its rhythms coursing through us. There are also rhythms inside us. There are so many rhythmic processes happening in our bodies, from the obvious ones, like sleeping and waking, to the most well hidden, like the secretion of hormones into the blood, that to explain their uncanny regularity and synchronicity we have adopted the figurative idea of the biological clock. Long before it was discovered, everyone agreed that if this extraordinary chronometer really did exist, then every last cell of our bodies would be able to tell the time from it.

Nowadays we locate it in the brain, in the part called the hypothalamus. The biological clock runs in two concentrations of gray matter, known as the hypothalamic nuclei, and so does its most essential part-the circadian oscillator. The clock's mechanism appears to be determined by a cycle of recurring reactions: the transcription of genes and the synthesis of proteins. These reactions form a feedback loop: so-called clock genes code proteins, which accumulate and retroactively obstruct the transcription of genes. As protein disintegrates, transcription gets going again, and the protein production cycle is resumed. This "clockwork" system, characterized by rhythmicality, is common to all species, from the fruit fly to man. It is teamed with the emission of circadian signals, which depend on changes in the cell's membrane potential. Once in existence, they spread into the nearest vicinity and to other areas of the brain as well.

But what use would a watch be if you couldn't set it to local time? The biological clock is buried in the brain just above the intersection of the optic nerves. Converted light signals take a short cut to bring it a constant supply of information about the world, just as the neurons that make up its structure provide it with information from inside the body. Within the "clock-gene" mechanism the rhythms of the internal and external worlds converge and harmonize.

Some people's biological clock runs fast. At the dawn of the third millennium several families were identified in the state of Utah, all of whose members-from grandparents to grandchildren-wake up four hours earlier than everyone else. They leap out of bed feeling full of energy, while their neighbors remain fast asleep for some time to come. Their clock seems to be set four hours ahead. In these early birds there has been a change in a single little letter, a nucleotide in one of their clock genes. Or perhaps the "night owls" carry a different, subtle genetic mutation within their clock? Medicine is now starting to look for drugs that can interfere in the working of the biological clock, to correct the disagreeable jet lag that we experience after transatlantic flights, for example. Will a new kind of doctor emerge in the future ... known as a "clockmaker"? Will the Polish minister of health have to add a new medical specialty to the current list of seventy-two? And to avoid confusion with clockmakers, will he give these specialists a scholarly name, "chronologists," for instance?

Of the many rhythms beating away inside our bodies the heartbeat is the one we care about most, perhaps because it has always been the hallmark of life-both biological and emotional. Doesn't the doctor listen to his patient's heartbeat just as attentively as the novelist listens to his hero's? Don't both of them borrow each other's words to describe the heart's condition, saying that it is throbbing, fluttering, or fading?

As far back as the longest-lasting consistent civilization ever to have existed, the world of ancient Egypt, the heart played an enormous role, as the center of psychological strength too. It comes into poetry, religion, and hieratic texts, and rises to the rank of not only the central organ in the body, but also the main seat of the emotions-virtually becoming "the essence of the essence" of man. In the era of the Old Kingdom, five thousand years ago, nothing but a man's heart would be tossed onto the scales at the posthumous judgment of Osiris. To be pure, a heart set on the scales before the god had to weigh less than the lightest feather. Otherwise, it was immediately gobbled up by a monster waiting by, and the Egyptian's life beyond the grave ended in eternal ignominy.

As for the heart, it's not so much its harmony with the rhythms of the surrounding world as its rhythm's independence that is its most amazing feature. Think back to our school biology lessons-if you remove a frog's heart and put it on the table top, it goes on beating for several long minutes. Every day in hundreds of operating theaters all over Europe surgeons stop a sick heart and cool down the body to perform complex operations, and once they've finished, they set the heart going again with an electric shock. During transplantation the heart taken from the donor's body is left on its own for several hours in a nourishing liquid that is simple to make; later on it ends up inside an organism that is alien to it, but once aroused by a current applied to its walls for a split second, it starts up a steady beat. These examples show that within the heart itself there must be a mechanism capable of setting it going rhythmically.

This mechanism is made up of specialized cells that generate and distribute impulses. They are not scattered at random, but are linked to form a compound structure. We call it the automatic system of the heart or, more often, the conductive system. The first name stresses the independence and above all the infallible, mechanical regularity with which the system works, and the second emphasizes the role it plays in dispersing the impulses. Large clusters of cells within the system form nodes, or stations, between which the impulses run along the tracks of fibers. Just like an army at the front, the conductive system has its own hierarchy, assuring that leadership is continually handed on in the event of the leader's death. At the top of the hierarchical ladder stands the sinoatrial, or sinus, node, which sets the pace, or takes the first step. It produces the highest-frequency impulses and thus stifles all the other potential pacemakers, dictating the rhythm of the entire heart. If it should become impaired, the role of leader is assumed by the next nodes down the hierarchy, successively setting rhythms of lower and lower frequency. When they too fall silent, the heart activates its emergency rescue mechanism, concealed in the muscle, and starts beating at the slowest rhythm that will guarantee a supply of blood to the organs at rest but will not allow for any effort at all. In such cases we speak of total heart block, as the intermediate stations and previously passable routes to them have been destroyed or obstructed.

What are the signals we have followed to make the journey from the first station right through to the last? We describe them as being electrical in nature, and we say that they come into being when fissures appear in the cell walls, tiny channels along which some charged atoms drop inside and others drop out. This event recurs rhythmically, causing potential differences. The electrical discharges travel along the routes familiar to us all the way to the muscle fibers, where they set off a contraction. But inside the cell walls, who opens the gate to such a precise rhythm, allowing the charged atoms to leap through in opposite directions? What sort of metronome beats out this primary rhythm, which sets the rhythm of the heart? We don't know the answer, and even with the idea of an electrical current we are skating over the surface of what actually occurs.

Do our hearts beat with the mechanical perfection of a metronome? Not everyone's does, as the following explanation shows. Impulses repeatedly continue to arise in the cells of the sinoatrial node to a perfect rhythm, like the beat of the most sensitive of metronomes. But before an impulse leaves the node, in order to disperse along the trails created for it and prompt the heart to contract, it experiences the extremely subtle influence of the sympathetic nervous system. This is a very delicate effect, which as a rule we are unable to detect with a stethoscope. However, we can perceive it by analyzing a long electrocardiogram recording. When we measure the gaps between consecutive heartbeats over a period of several minutes, we notice that in many of us there are tiny differences between them, and that they deviate from the average by hundredths of a second.

This reminds us of the musical tempo rubato, which is a typical feature of Chopin's work. There are lots of familiar definitions of Chopin's rubato. Some say it describes performing a composition "with a subtle rhythmic anxiety." Other say that rubato relies on "tiny shifts between the notes of the melody within the range of its own beat, against a steadily paced bass." Franz Liszt characterized Chopin's rubato by comparing it to a tree, "when its crown bends in all directions in the wind, but its roots are stuck firmly in the ground."

Chopin used the term rubato to denote playing senzo rigore in his mazurkas and nocturnes written in the years 1824-1835, but from 1836 he stopped using it. According to Gastone Belotti the reasons for this are obvious: as soon as he reached maturity all his compositions were to be played rubato.

There are some hearts in which the rubato, that "subtle rhythmic anxiety," clearly registers, as in Chopin's mature work, and there are others in which-as in his earlier, youthful work-it is not perceptible. When struck by a dangerous illness, the former are less likely to stop suddenly, as if a lack of stiffness, a sort of flexibility, or a tendency toward a free and easy beat had prepared them better for the onset of malevolent, morbid rhythms. Analysis of these discreet deviations from the perfect rhythm under the influence of the nervous system (known as "heart rate variability") is finding ever wider application in assessing the risk of sudden cardiac arrest in patients who have already suffered a heart attack.

Doctors have always set great store by examining the pulse and have become highly proficient at it. In the third century BC Herophilus of Alexandria assessed separate phases of the pulse by using a clock of his own construction, which he took with him on visits to his patients. For centuries the pulse rate has been tested by all possible means, in the not unreasonable belief that it will provide a way to discover the secrets of how the heart and the entire body function. Only a few years ago medical students had to stand at the patient's bedside and define in a single breath such basic features of the pulse as its regularity, frequency, intensity, fullness, and tension. The terms used to encapsulate the main quality of a pulse must have seemed countless, as they spoke of a bigeminal pulse, a thready, or filiform, pulse, or when they ran out of adjectives, a paradoxical pulse. Surely in the present era of omnipotent technology all this knowledge has fallen by the wayside? Not at all-the 2000 edition of the renowned Dorland's Medical Dictionary, advertised as a compendium of the most essential information for medical practice in the third millennium, describes eighty-two different types of pulse!

Naturally, examining the pulse has had its stiffest competition from listening to the heart. The French doctor René Laënnec was the founder of auscultation; one day, to avoid placing his ear inappropriately close to the chest of a young female patient, he rolled a piece of paper into a tube, tied it with string and set it to her heart, never for a moment imagining that his invention would open up a whole new world of sounds-the ones that are literally closest to us, but that had been closed to our hearing until then. Arrhythmia provides the perfect example. A single extrasystole is like a slight stumble in a dance-one little sway that we don't even notice before we pick up the rhythm in the next step and it sweeps us onward. A heartbeat that is punctuated by recurring premature contractions makes us think that syncopation was not the original discovery of jazz musicians. In atrial fibrillation the pause between contractions changes, while the rhythmic accent shifts. The pace of a galloping horse can be heard in left heart failure (the "gallop rhythm"). The beating of a heart affected by a total block is interrupted at lengthy intervals by noisy "cannon fire" (when the atria and ventricles contract simultaneously), which is repeated by a faint echo of the atria contracting.

Echo was the name of a mountain nymph. The Greek myths give various explanations for how she came to personify a disembodied, recurring voice. After falling in unrequited love with Narcissus she sank into such despair that she began to disappear, until nothing was left of her but her voice. In another version, for keeping Zeus's love affairs secret Hera condemned Echo to repeat the last word of anyone who spoke to her. Not surprisingly, as new languages arose, they began to repeat her name. She found herself a home in them for ever, ultimately becoming one of the most frequently used words in modern medicine. Echo, echosonography, echocardiograph.... We penetrate the heart with sound waves, and they bounce back, returning to us as an echo, from which we can construct an image of the heart itself, one that is astoundingly precise in its details. The diagnostic equipment is developing so fast you might think it was trying to catch up with the perfect echolocation techniques of ... bats.

By revealing the details of the anatomy of the heart or the power of its muscles to contract, the echocardiogram enables us to understand the causes of heartbeat disturbances. An electrocardiogram then enables us to diagnose them. An especially valuable tool is the around-the-clock ECG recorder, popularly named the Holter after an American doctor. It produces a diary, written by the heart, recording every single one of its contractions, and of course every, even the briefest, arrhythmia or ischemia. This record is an invaluable aid in everyday medical diagnostics. More refined analyses are also being developed to detect subtle asynchronicities in the action of the heart. Mathematicians and physicists are helping medical researchers with these extremely complex phenomena by applying the dynamics of nonlinear systems and chaos theory.

What a range of facilities there is nowadays for medical students trying to fathom the music of the heart! We lay a diaphragm fitted with an electronic amplifier over the sternum, at the point where the ribs join. It has six pairs of acoustic ducts coming out of it, just like the tube of an ordinary stethoscope. This allows six people to listen to the sounds issuing from the same point above the heart simultaneously. Meanwhile, the screen of a portable computer displays an electrocardiographic curve, and beneath it a phonocardiogram-a nonstop recording of all the tones, murmurs, and other acoustic features produced by the heart. You can stop it, "freeze" it, and analyze it.

(Continues...)



Excerpted from Catharsis by Andrzej Szczeklik Copyright © 2005 by University of Chicago. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents

Foreword, Czeslaw Milosz
1. Ribbons
2. Constellations
3. The Elixir of Life
4. A Tangle of Serpents
5. In between Art and Science
6. The Rhythm of the Heart
7. A Purifying Power
8. Suffering
9. Exitus
10. Chimera
11. After the Genome
12. Alterations and Returns
Notes

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted November 8, 2009

    No text was provided for this review.

Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)