Causality: Models, Reasoning and Inference / Edition 2

Causality: Models, Reasoning and Inference / Edition 2

by Judea Pearl
     
 

ISBN-10: 052189560X

ISBN-13: 9780521895606

Pub. Date: 09/30/2009

Publisher: Cambridge University Press

Written by one of the preeminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, economics, philosophy, cognitive science, and the health and

…  See more details below

Overview

Written by one of the preeminent researchers in the field, this book provides a comprehensive exposition of modern analysis of causation. It shows how causality has grown from a nebulous concept into a mathematical theory with significant applications in the fields of statistics, artificial intelligence, economics, philosophy, cognitive science, and the health and social sciences. Judea Pearl presents and unifies the probabilistic, manipulative, counterfactual, and structural approaches to causation and devises simple mathematical tools for studying the relationships between causal connections and statistical associations. The book will open the way for including causal analysis in the standard curricula of statistics, artificial intelligence, business, epidemiology, social sciences, and economics. Students in these fields will find natural models, simple inferential procedures, and precise mathematical definitions of causal concepts that traditional texts have evaded or made unduly complicated. The first edition of Causality has led to a paradigmatic change in the way that causality is treated in statistics, philosophy, computer science, social science, and economics. Cited in more than 5,000 scientific publications, it continues to liberate scientists from the traditional molds of statistical thinking. In this revised edition, Judea Pearl elucidates thorny issues, answers readers’ questions, and offers a panoramic view of recent advances in this field of research. Causality will be of interests to students and professionals in a wide variety of fields. Anyone who wishes to elucidate meaningful relationships from data, predict effects of actions and policies, assess explanations of reported events, or form theories of causal understanding and causal speech will find this book stimulating and invaluable.

Read More

Product Details

ISBN-13:
9780521895606
Publisher:
Cambridge University Press
Publication date:
09/30/2009
Edition description:
New Edition
Pages:
484
Sales rank:
832,574
Product dimensions:
7.30(w) x 9.90(h) x 1.30(d)

Table of Contents

1. Introduction to probabilities, graphs, and causal models; 2. A theory of inferred causation; 3. Causal diagrams and the identification of causal effects; 4. Actions, plans, and direct effects; 5. Causality and structural models in social science and economics; 6. Simpson's paradox, confounding, and collapsibility; 7. The logic of structure-based counterfactuals; 8. Imperfect experiments: bounding effects and counterfactuals; 9. Probability of causation: interpretation and identification; 10. The actual cause.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >