Causality, Measurement Theory and the Differentiable Structure of Space-Time

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $73.98
Usually ships in 1-2 business days
(Save 52%)
Other sellers (Hardcover)
  • All (7) from $73.98   
  • New (3) from $124.10   
  • Used (4) from $73.98   


Introducing graduate students and researchers to mathematical physics, this book discusses two recent developments: the demonstration that causality can be defined on discrete space-times; and Sewell's measurement theory, in which the wave packet is reduced without recourse to the observer's conscious ego, nonlinearities or interaction with the rest of the universe. The definition of causality on a discrete space-time assumes that space-time is made up of geometrical points. Using Sewell's measurement theory, the author concludes that the notion of geometrical points is as meaningful in quantum mechanics as it is in classical mechanics, and that it is impossible to tell whether the differential calculus is a discovery or an invention. Providing a mathematical discourse on the relation between theoretical and experimental physics, the book gives detailed accounts of the mathematically difficult measurement theories of von Neumann and Sewell.

Read More Show Less

Editorial Reviews

From the Publisher
"Sen has written a superb book. It should be of special interest to any serious senior undergraduate or graduate student in theoretical physics, and to mathematical physicists and mathematicians working in quantum theory, quantum field theory, relativity, or the foundations of physics."
Howard E. Brandt, Mathematical Reviews

"A great deal of interesting historical material is included in these pages, some of it hard to find elsewhere, and the author assists his readers considerably by providing extensive mathematical appendices, within which many basic results are derived. For these reasons, and taking into account the fundamental importance of the subject matter, I would consider that the book has a good claim for a place on library shelves."
Dr. Peter J. Bussey, Contemporary Physics

"Sen has written a superb book."
Howard E. Brandt, MAA Reviews

Read More Show Less

Product Details

Meet the Author

R. N. Sen was a Professor in the Department of Mathematics at Ben-Gurion University, Beer-Sheva, Israel, and is now retired. His main research interests were the theory of symmetry of infinite quantum-mechanical systems and mathematical investigations into the relation between mathematics and physics, particularly the origins of the differentiable structure of space-time. He has taught a broad spectrum of courses on physics and mathematics, as well as demography. A life member of Clare Hall, Cambridge, he has been a Gauss Professor in Göttingen and is also a member of the International Association for Mathematical Physics and the Israel Mathematical Union.

Read More Show Less

Table of Contents

Prologue; Part I: Introduction to Part I; 1. Mathematical structures on sets of points; 2. Definition of causality on a structureless set; 3. The topology of ordered spaces; 4. Completions of ordered spaces; 5. Structures on order-complete spaces; Part II: Introduction to Part II; 6. Real numbers and classical measurements; 7. Special topics in quantum mechanics; 8. Von Neumann's theory of measurement; 9. Macroscopic observables in quantum physics; 10. Sewell's theory of measurement; 11. Summing-up; 12. Large quantum systems; Epilogue; Appendixes; References; Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)