The cdma2000 System for Mobile Communications: 3g Wireless Evolution

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $24.00
Usually ships in 1-2 business days
(Save 80%)
Other sellers (Hardcover)
  • All (4) from $24.00   
  • New (2) from $111.98   
  • Used (2) from $24.00   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$111.98
Seller since 2014

Feedback rating:

(3)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
New Brand new. Excellent condition.

Ships from: Scarborough, Canada

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$425.02
Seller since 2010

Feedback rating:

(236)

Condition: New
Hardcover New 0131416014 New Condition *** Right Off the Shelf | Ships within 2 Business Days ~~~ Customer Service Is Our Top Priority! -Thank you for LOOKING: -)

Ships from: Geneva, IL

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

cdma2000 in depth: architecture, protocols, design, and operation

This is a complete guide to the architecture and operation of cdma2000 networks. Three leading experts begin by reviewing the theory of CDMA communications, then systematically discuss every component of a cdma2000 network, including radio access networks, packet core networks, mobile stations, and their reference points. The authors present in-depth coverage of the cdma2000 air interface protocols between mobile and base stations; physical layer design; media access control; layer 3 signaling; handoffs; power control; radio resource management for mixed voice and data services; radio access network performance; and end-to-end call flows for circuit switched voice, packet data, and concurrent services. Coverage includes:

  • CDMA and spread spectrum fundamentals: modulation/demodulation, forward error correction, turbo coding, and diversity
  • Applications and services, including conversational voice, Web browsing, file transfer, WAP, video streaming, and VoIP
  • Evolution of integrated data and voice services (1xEV-DV)
  • Handoff principles and types, including idle, access, soft, and hard handoffs
  • Reverse and forward link power control principles, algorithms, and implementation aspects
  • Algorithms and implementation aspects for radio resource management
  • End-to-end network operations: location and state management, call processing, SMS, and more

This is an ideal reference for professionals designing or building cdma2000 infrastructure and mobile stations, operators deploying and managing cdma2000 networks, and any wireless communications engineer who wants a thorough understanding of cdma2000 technology.

Read More Show Less

Product Details

Meet the Author

VIERI VANGHI, Senior Staff Engineer at QUALCOMM, has more than ten years' experience in CDMA systems engineering, including base station and mobile station design.

ALEKSANDAR DAMNJANOVIC, Senior Engineer at QUALCOMM, has more than four years' experience in CDMA systems engineering and cdma2000 air interface standardization.

BRANIMIR VOJCIC is Chairman and Professor of Engineering and Applied Science, Department of Electrical and Computer Engineering, George Washington University.

Read More Show Less

Read an Excerpt

Preface

Spread spectrum communications techniques have been used in military applications since the 2nd World War but have found a widespread commercial use only in the last ten years or so. To cope with the accelerating demand for mobile communications in the early 1990s, the introduction of spread spectrum techniques in cellular communications afforded a bandwidth efficient digital technology that could accommodate, within a given wireless spectrum allocation, a larger population of mobile users than other analog or digital technologies.

Spread spectrum systems exploit the noise-like characteristics of the spread signal waveform to allow multiple simultaneous transmissions using a common bandwidth. This is accomplished by means of spreading codes that are unique to each user and have mutually low correlation so that the multiple access signals can be separated at the receiver by means of despreading. Due to the use of spreading codes to achieve multiple access capability, this technology was named code-division multiple access (CDMA). Several favorable properties of spread spectrum signals can be exploited in the context of CDMA. Firstly, the wide-band characteristic of the spread signal enables to resolve and constructively combine the multipath components at the receiver, thus mitigating channel fading. Also, the wide-band nature of spread spectrum signals allows employing powerful forward error correction codes without the bandwidth expansion penalty that is incurred in narrow-band technologies. In the context of cellular CDMA, spread spectrum allows for universal frequency reuse, which increases overall network capacity and eliminates the task of frequency planning. Finally, spread spectrum allows for soft handoff, a technique which improves performance at the cell boundary, and increases cell range and capacity.

The first cellular CDMA system was pioneered by QUALCOMM Inc., whose efforts led to the adoption of the IS-95 CDMA standard by the Telecommunication Industry Association (TIA) in 1993. The IS-95 standard and its associated core network protocols are collectively known as cdmaOne(TM). Since then, the ever increasing demand for bandwidth efficiency, higher data rates and new services has motivated the constant evolution of the CDMA standard. IS-95 was primarily designed for voice services and to support low speed data applications. The data capabilities have since then improved, achieving higher data rates with increased bandwidth efficiency. At the same time the support of voice services has also improved with the adoption of more efficient vocoders. The milestones in the CDMA standards evolution are illustrated in CDMA air-interface standards evolution. An important milestone was achieved in 1999, when the IS-2000 CDMA standard (also referred to as CDMA 1X), developed under the auspices of standard development organizations of several countries, was approved by the International Telecommunication Union (ITU) within the IMT-2000 initiative, as one of the standards for the 3rd generation mobile communications. Standards evolution exploited the flexibility afforded by CDMA in multiplexing multiple channels, which has allowed the adoption of revolutionary concepts without disrupting backward compatibility. Among them, the concept of fast forward link data rate adaptation with fast scheduling and hybrid ARQ was first introduced in IS-856, also referred to as High Rate Packet Data (HRPD), a CDMA system optimized for data only transmission that achieves very high forward link data rates and bandwidth efficiency. Similar concepts have been recently adopted in IS-2000-C, which allows for both circuit switched voice and high speed forward link data applications. IS-2000-C is sometimes referred to as 1X Evolution for Data and Voice (1X EVDV). The IS-856 and the IS-2000 standards, together with the associated core network and service protocols, are collectively known as the cdma2000 standard. At the time of the completion of this manuscript, IS-2000 revision D and IS-856 revision A are being standardized. The main feature of the new revisions is efficient support for high speed reverse link packet data through hybrid ARQ operation.

The cdma2000, specifications comprise thousands of pages and pose a daunting challenge even to the experienced practitioners. More importantly, with the ever increasing number of radio channel configurations, functionalities and applications supported by cdma2000 specifications, the motivating CDMA concepts tend to become obscure. In light of the above, the aim of this book is twofold. Firstly, it is to present how the principles of spread spectrum communication in general and CDMA in particular are applied to the cdma2000 standards. Secondly, it is too navigate the reader through the maze of specifications and distill their fundamentals into a manageable, but still comprehensive description of cdma2000 1X.

This book approaches cdma2000 mainly from a radio access network perspective, and focuses on the mobile station and base station interoperability procedures as specified in the IS-2000-C revision of the standard. In addition, this book also describes network architecture and services, and how these services are realized, end-to-end, throughout the various network interfaces. Chapter 1 introduces the main concepts of spread spectrum techniques applied to CDMA cellular systems. Chapter 2 and 3 set the stage from a network perspective, describing the overall cdma2000 network architecture and the services it supports. Chapter 4 describes the functions performed by the CDMA modem and summarizes the IS-2000-C physical layer protocol. Chapter 5 and 6 describe the media access and signaling layer IS-2000-C protocols, respectively. The following chapters, from Chapter 7 to Chapter 9, describe soft handoff, power control, and packet data transmission techniques both from a protocol and an implementation perspective, giving practical guidelines and examples on how to implement these functionalities. Chapter 10 provides an analytical framework to estimate CDMA cell capacity and cell range, together with numerical examples that are useful to the practitioner. Finally, Chapter 11 describes how services are realized, end-to-end, in the cdma2000 network.

Given its scope and depth, we believe this book to be not only an invaluable aid to those that approach CDMA systems for the first time, but also an useful reference to the practitioners, system designers, and network operators. The book content and its structure also lend itself to be used for specialized courses and as a secondary academic text for courses in mobile communication systems and CDMA.

This leaves us with the pleasant task of acknowledging the contributions of the many individuals who reviewed this book. We would like to thank Alpaslan Savas, and our colleagues at QUALCOMM Inc., Baaziz Achour, Sanjeev Athalye, Tao Chen, Walid Hamdy, Duncan Ho, Jack Holtzman, John Ketchum, Jack Nasielski, Joe Odenwalder, Ragulan Sinnarajah, and Edward Tiedemann. Thanks to Jon Rayner for his contributions to the cover design. To all of the above we express our sincere thanks. We would also like to acknowledge the entire QUALCOMM team of engineers whose relentless efforts over past fifteen years have made CDMA the technology of choice for the present and future mobile systems. Last but not least, we are indebted to our families and soulmates for their support and patience during the many evenings and weekends we spent writing this book.

Read More Show Less

Table of Contents

Preface.

1. Introduction to CDMA.

Direct Sequence Spread Spectrum. Code Division Multiple Access. Forward Error Correction and Interleaving. CDMA in Cellular Communications. Antenna Diversity in CDMA.

2. Architecture.

Mobile Station. Radio Access Network. IS-41 Core Network. Packet Core Network. PCN Interworking Examples. IETF Protocols.

3. Applications and Services.

Applications. Services. Circuit-Switched Service Options. Packet-Switched Service Options.

4. IS-2000 Physical Layer.

CDMA Channel Structure. Modulation, Coding, and Spreading Characteristics. Forward Code Channels. Reverse Channels.

5. IS-2000 Layer 2 (Medium and Signaling Link Access Control Layers).

Medium Access Control Layer. Signaling Link Access Control Layer.

6. IS-2000 Layer 3 Protocol.

Identification. Layer 3 Processing. Call Processing Examples: Voice Calls. Packet Data Service Protocol. Concurrent Services. Registration. Security. CDMA Tiered Services.

7. Handoffs.

Handoff Principles. Initial Pilot Acquisition. Idle Handoff. Access Handoffs. Soft Handoff. Pilot Planning. Hard Handoff.

8. Power Control.

Power-Control Fundamentals. Reverse-Link Power Control. Forward-Link Power Control.

9. Packet Data Operation.

Fundamentals. Resource Management for Mixed Voice and Data Traffic. Scheduling Algorithms. Forward Supplemental Channel Operation. Reverse Supplemental Channel Operation. Forward Packet Data Channel Operation. Impact on TCP Performance.

10. Radio Access Network Performance.

Models for Capacity Estimation in Cellular CDMA. Cell Capacity. Cell Coverage.

11. cdma2000 End-to-End Network Operations.

Location and State Management. Basic Call Processing. Short Message Services. Intersystem Handoff. Packet-Switched Data Calls. Concurrent Services.

Index.

Read More Show Less

Preface

Preface

Spread spectrum communications techniques have been used in military applications since the 2nd World War but have found a widespread commercial use only in the last ten years or so. To cope with the accelerating demand for mobile communications in the early 1990s, the introduction of spread spectrum techniques in cellular communications afforded a bandwidth efficient digital technology that could accommodate, within a given wireless spectrum allocation, a larger population of mobile users than other analog or digital technologies.

Spread spectrum systems exploit the noise-like characteristics of the spread signal waveform to allow multiple simultaneous transmissions using a common bandwidth. This is accomplished by means of spreading codes that are unique to each user and have mutually low correlation so that the multiple access signals can be separated at the receiver by means of despreading. Due to the use of spreading codes to achieve multiple access capability, this technology was named code-division multiple access (CDMA). Several favorable properties of spread spectrum signals can be exploited in the context of CDMA. Firstly, the wide-band characteristic of the spread signal enables to resolve and constructively combine the multipath components at the receiver, thus mitigating channel fading. Also, the wide-band nature of spread spectrum signals allows employing powerful forward error correction codes without the bandwidth expansion penalty that is incurred in narrow-band technologies. In the context of cellular CDMA, spread spectrum allows for universal frequency reuse, which increases overall network capacity and eliminates the task of frequency planning. Finally, spread spectrum allows for soft handoff, a technique which improves performance at the cell boundary, and increases cell range and capacity.

The first cellular CDMA system was pioneered by QUALCOMM Inc., whose efforts led to the adoption of the IS-95 CDMA standard by the Telecommunication Industry Association (TIA) in 1993. The IS-95 standard and its associated core network protocols are collectively known as cdmaOne(TM). Since then, the ever increasing demand for bandwidth efficiency, higher data rates and new services has motivated the constant evolution of the CDMA standard. IS-95 was primarily designed for voice services and to support low speed data applications. The data capabilities have since then improved, achieving higher data rates with increased bandwidth efficiency. At the same time the support of voice services has also improved with the adoption of more efficient vocoders. The milestones in the CDMA standards evolution are illustrated in CDMA air-interface standards evolution. An important milestone was achieved in 1999, when the IS-2000 CDMA standard (also referred to as CDMA 1X), developed under the auspices of standard development organizations of several countries, was approved by the International Telecommunication Union (ITU) within the IMT-2000 initiative, as one of the standards for the 3rd generation mobile communications. Standards evolution exploited the flexibility afforded by CDMA in multiplexing multiple channels, which has allowed the adoption of revolutionary concepts without disrupting backward compatibility. Among them, the concept of fast forward link data rate adaptation with fast scheduling and hybrid ARQ was first introduced in IS-856, also referred to as High Rate Packet Data (HRPD), a CDMA system optimized for data only transmission that achieves very high forward link data rates and bandwidth efficiency. Similar concepts have been recently adopted in IS-2000-C, which allows for both circuit switched voice and high speed forward link data applications. IS-2000-C is sometimes referred to as 1X Evolution for Data and Voice (1X EVDV). The IS-856 and the IS-2000 standards, together with the associated core network and service protocols, are collectively known as the cdma2000 standard. At the time of the completion of this manuscript, IS-2000 revision D and IS-856 revision A are being standardized. The main feature of the new revisions is efficient support for high speed reverse link packet data through hybrid ARQ operation.

The cdma2000, specifications comprise thousands of pages and pose a daunting challenge even to the experienced practitioners. More importantly, with the ever increasing number of radio channel configurations, functionalities and applications supported by cdma2000 specifications, the motivating CDMA concepts tend to become obscure. In light of the above, the aim of this book is twofold. Firstly, it is to present how the principles of spread spectrum communication in general and CDMA in particular are applied to the cdma2000 standards. Secondly, it is too navigate the reader through the maze of specifications and distill their fundamentals into a manageable, but still comprehensive description of cdma2000 1X.

This book approaches cdma2000 mainly from a radio access network perspective, and focuses on the mobile station and base station interoperability procedures as specified in the IS-2000-C revision of the standard. In addition, this book also describes network architecture and services, and how these services are realized, end-to-end, throughout the various network interfaces. Chapter 1 introduces the main concepts of spread spectrum techniques applied to CDMA cellular systems. Chapter 2 and 3 set the stage from a network perspective, describing the overall cdma2000 network architecture and the services it supports. Chapter 4 describes the functions performed by the CDMA modem and summarizes the IS-2000-C physical layer protocol. Chapter 5 and 6 describe the media access and signaling layer IS-2000-C protocols, respectively. The following chapters, from Chapter 7 to Chapter 9, describe soft handoff, power control, and packet data transmission techniques both from a protocol and an implementation perspective, giving practical guidelines and examples on how to implement these functionalities. Chapter 10 provides an analytical framework to estimate CDMA cell capacity and cell range, together with numerical examples that are useful to the practitioner. Finally, Chapter 11 describes how services are realized, end-to-end, in the cdma2000 network.

Given its scope and depth, we believe this book to be not only an invaluable aid to those that approach CDMA systems for the first time, but also an useful reference to the practitioners, system designers, and network operators. The book content and its structure also lend itself to be used for specialized courses and as a secondary academic text for courses in mobile communication systems and CDMA.

This leaves us with the pleasant task of acknowledging the contributions of the many individuals who reviewed this book. We would like to thank Alpaslan Savas, and our colleagues at QUALCOMM Inc., Baaziz Achour, Sanjeev Athalye, Tao Chen, Walid Hamdy, Duncan Ho, Jack Holtzman, John Ketchum, Jack Nasielski, Joe Odenwalder, Ragulan Sinnarajah, and Edward Tiedemann. Thanks to Jon Rayner for his contributions to the cover design. To all of the above we express our sincere thanks. We would also like to acknowledge the entire QUALCOMM team of engineers whose relentless efforts over past fifteen years have made CDMA the technology of choice for the present and future mobile systems. Last but not least, we are indebted to our families and soulmates for their support and patience during the many evenings and weekends we spent writing this book.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)