Class Field Theory: From Theory to Practice / Edition 1

Paperback (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $95.61
Usually ships in 1-2 business days
(Save 25%)
Other sellers (Paperback)
  • All (7) from $95.61   
  • New (6) from $93.46   
  • Used (1) from $176.40   


Global class field theory is a major achievement of algebraic number theory based on the functorial properties of the reciprocity map and the existence theorem. This book explores the consequences and the practical use of these results in detailed studies and illustrations of classical subjects. In the corrected second printing 2005, the author improves many details all through the book.

Read More Show Less

Editorial Reviews

From the Publisher

From the reviews:

"The author writes in the preface that the aim of this book is ‘to help in the practical use and understanding of the principles of global class field theory for number fields, without any attempt to give proofs of the foundations …’ . He succeeded in his task admirably. The book brings a huge amount of information on … class field theory, illustrated with many well-chosen examples. … should be an obligatory reading for everybody interested in the modern development of algebraic number theory." (Wladyslaw Narkiewicz, Zentralblatt MATH, Vol. 1019, 2003)

"Global class field theory is a major achievement of algebraic number theory, based on the functorial properties of the reciprocity map and the existence theorem. The author works out the consequences and the practical use of these results by giving detailed studies and illustrations of classical subjects … . This book … gives much material in an elementary way, and is suitable for students, researchers and all who are fascinated by this theory." (L’Enseignement Mathematique, Vol. 49 (1-2), 2003)

"Each subject is treated very clearly from the theoretical side and explained by examples. The richness in examples is among the most attractive features of this book. … The book concludes with a very ample and well-organized bibliography. The writing is very clear and precise throughout. … This book gives an encompassing theoretical picture of large parts of class field theory. It is of particular interest to everybody interested … in this domain. … it is also a very enjoyable book." (Cornelius Greither, Mathematical Reviews, 2003 j)

Read More Show Less

Product Details

  • ISBN-13: 9783642079085
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 12/9/2010
  • Series: Springer Monographs in Mathematics Series
  • Edition description: Softcover reprint of hardcover 1st ed. 2003
  • Edition number: 1
  • Pages: 491
  • Product dimensions: 1.03 (w) x 9.21 (h) x 6.14 (d)

Table of Contents

Preface Introduction to Global Class Field Theory Chapter I: Basic Tools and Notations 1) Places of a number field 2) Embeddings of a Number Field in its Completions 3) Number and Ideal Groups 4) Idele Groups - Generalized Class Groups 5) Reduced Ideles - Topological Aspects 6) Kummer Extensions Chapter II: Reciprocity Maps - Existence Theorems 1) The Local Reciprocity Map - Local Class Field Theory 2) Idele Groups in an Extension L/K 3) Global Class Field Theory: Idelic Version 4) Global Class Field Theory: Class Group Version 5) Ray Class Fields 6) The Hasse Principle - For Norms - For Powers 7) Symbols Over Number Fields - Hilbert and Regular Kernels Chapter III: Abelian Extensions with Restricted Ramification - Abelian Closure 1) Generalities on H(T)/H and its Subextensions 2) Computation of A(T) := Gal(H(T)/K) and T(T) := tor(A(T)) 3) Study of the compositum of the Zp-extensions - The p-adic Conjecture 4) Structure Theorems for the Abelian Closure of K 5) Explicit Computations in Incomplete p-Ramification 6) The Radical of the Maximal Elementary Subextension of the compositum of the Zp-extensions Chapter IV: Invariant Classes Formulas in p-ramification - Genus Theory 1) Reduction to the Case of p-Ramification 2) Injectivity of the Transfer Map: A(K,p) to A(L,p) 3) Determination of invariant classes of A(L,p) and T(L,p) - p-Rationality 4) Genus Theory with Ramification and Decomposition Chapter V: Cyclic Extensions with Prescribed Ramification 1) Study of an Example 2) Construction of a Governing Field 3) Conclusion and Perspectives Appendix: Arithmetical Interpretation of the second cohomology group of G(T,S) over Zp 1) A General Approach by Class Field Theory 2) Complete p-Ramification Without Finite Decomposition 3) The General Case - Infinitesimal Knot Groups Bibliography Index of Notations
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)