Clustering and Information Retrieval
Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus­ tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster­ ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad­ dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for information retrieval. Crichton, Hughes, and Kelly elaborate on the development of a scientific data system architecture for information retrieval.
1101307365
Clustering and Information Retrieval
Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus­ tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster­ ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad­ dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for information retrieval. Crichton, Hughes, and Kelly elaborate on the development of a scientific data system architecture for information retrieval.
169.99 In Stock
Clustering and Information Retrieval

Clustering and Information Retrieval

Clustering and Information Retrieval

Clustering and Information Retrieval

Paperback(Softcover reprint of the original 1st ed. 2004)

$169.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Clustering is an important technique for discovering relatively dense sub-regions or sub-spaces of a multi-dimension data distribution. Clus­ tering has been used in information retrieval for many different purposes, such as query expansion, document grouping, document indexing, and visualization of search results. In this book, we address issues of cluster­ ing algorithms, evaluation methodologies, applications, and architectures for information retrieval. The first two chapters discuss clustering algorithms. The chapter from Baeza-Yates et al. describes a clustering method for a general metric space which is a common model of data relevant to information retrieval. The chapter by Guha, Rastogi, and Shim presents a survey as well as detailed discussion of two clustering algorithms: CURE and ROCK for numeric data and categorical data respectively. Evaluation methodologies are addressed in the next two chapters. Ertoz et al. demonstrate the use of text retrieval benchmarks, such as TRECS, to evaluate clustering algorithms. He et al. provide objective measures of clustering quality in their chapter. Applications of clustering methods to information retrieval is ad­ dressed in the next four chapters. Chu et al. and Noel et al. explore feature selection using word stems, phrases, and link associations for document clustering and indexing. Wen et al. and Sung et al. discuss applications of clustering to user queries and data cleansing. Finally, we consider the problem of designing architectures for information retrieval. Crichton, Hughes, and Kelly elaborate on the development of a scientific data system architecture for information retrieval.

Product Details

ISBN-13: 9781461379492
Publisher: Springer US
Publication date: 09/17/2011
Series: Network Theory and Applications , #11
Edition description: Softcover reprint of the original 1st ed. 2004
Pages: 330
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

Clustering in Metric Spaces with Applications to Information Retrieval.- Techniques for Clustering Massive Data Sets.- Finding Topics in Collections of Documents: A Shared Nearest Neighbor Approach.- On Quantitative Evaluation of Clustering Systems.- Techniques for Textual Document Indexing and Retrieval via Knowledge Sources and Data Mining.- Document Clustering, Visualization, and Retrieval via Link Mining.- Query Clustering in the Web Context.- Clustering Techniques for Large Database Cleansing.- A Science Data System Architecture for Information Retrieval.- Granular Computing for the Design of Information Retrieval Support Systems.
From the B&N Reads Blog

Customer Reviews