College Physics, Volume 2 (with PhysicsNOW) / Edition 7

College Physics, Volume 2 (with PhysicsNOW) / Edition 7

by Raymond A. Serway, Jerry S. Faughn, Charles A. Bennett, Chris Vuille

Open the door to the fascinating world of physics! The most fundamental of all natural sciences, physics will reveal to you the basic principles of the Universe. And while physics can seem challenging, its true beauty lies in the sheer simplicity of fundamental physical theories—theories and concepts that can enrich your view of the world around you. COLLEGE

See more details below


Open the door to the fascinating world of physics! The most fundamental of all natural sciences, physics will reveal to you the basic principles of the Universe. And while physics can seem challenging, its true beauty lies in the sheer simplicity of fundamental physical theories—theories and concepts that can enrich your view of the world around you. COLLEGE PHYSICS: VOLUME II gives you a clear and logical presentation of the basic concepts, and with its integrated media resources, you have the maximum opportunity for success! Each new text includes access to PHYSICSNOW, the ultimate web-based homework and tutorial system! This interactive learning system tailors itself to your needs in the course. It's like having a personal tutor available whenever you need it!

Product Details

Cengage Learning
Publication date:
Edition description:
Older Edition
Product dimensions:
8.46(w) x 11.14(h) x 0.98(d)

Meet the Author

Raymond A. Serway received his doctorate at Illinois Institute of Technology and is Professor Emeritus at James Madison University. In 2011, he was awarded an honorary doctorate degree from his alma mater, Utica College. He received the 1990 Madison Scholar Award at James Madison University, where he taught for 17 years. Dr. Serway began his teaching career at Clarkson University, where he conducted research and taught from 1967 to 1980. He was the recipient of the Distinguished Teaching Award at Clarkson University in 1977 and the Alumni Achievement Award from Utica College in 1985. As Guest Scientist at the IBM Research Laboratory in Zurich, Switzerland, he worked with K. Alex Müller, 1987 Nobel Prize recipient. Dr. Serway also was a visiting scientist at Argonne National Laboratory, where he collaborated with his mentor and friend, the late Sam Marshall. In addition to PHYSICS FOR SCIENTISTS AND ENGINEERS, Dr. Serway is the coauthor of PRINCIPLES OF PHYSICS, Fifth Edition; COLLEGE PHYSICS, Ninth Edition; ESSENTIALS OF COLLEGE PHYSICS; MODERN PHYSICS, Third Edition; and the high school textbook PHYSICS, published by Holt McDougal. In addition, Dr. Serway has published more than 40 research papers in the field of condensed matter physics and has given more than 60 presentations at professional meetings. Dr. Serway and his wife Elizabeth enjoy traveling, playing golf, fishing, gardening, singing in the church choir, and especially spending quality time with their four children, nine grandchildren, and a recent great-grandson.

Jerry S. Faughn earned his doctorate at the University of Mississippi. He is Professor Emeritus and former Chair of the Department of Physics and Astronomy at Eastern Kentucky University. He is coauthor of a nonmathematical physics text; a physical science text for general education students; and (with Dr. Serway) the high school textbook PHYSICS, published by Holt, Rinehart and Winston. He has taught courses ranging from the lower division to the graduate level, but his primary interest is in students just beginning to learn physics. He has been director of a number of NSF and state grants, many of which were devoted to the improvement of physics education. He believes that there is no greater calling than to be a teacher and an interpreter of physics for others.

Read More

Table of Contents

15. Electric Forces and Electric Fields. Properties of Electric Charges. Insulators and Conductors. Coulomb's Law. The Electric Field. Electric Field Lines. Conductors in Electrostatic Equilibrium. The Millikan Oil-Drop Experiment. The Van de Graaff Generator. Electric Flux and Gauss's Law. 16. Electrical Energy and Capacitance. Potential Difference and Electric Potential. Electric Potential and Potential Energy Due to Point Charges. Potentials and Charged Conductors. Equipotential Surfaces. Applications. Capacitance. The Parallel-Plate Capacitor. Combinations of Capacitors. Energy Stored in a Charged Capacitor. Capacitors with Dielectrics. 17. Current and Resistance. Electric Current. A Microscopic View: Current and Drift Speed. Current and Voltage Measurements in Circuits. Resistance and Ohm's Law. Resistivity. Temperature Variation of Resistance. Superconductors. Electrical Energy and Power. Electrical Activity in the Heart. 18. Direct Current Circuits. Sources of emf. Resistors in Series. Resistors in Parallel. Kirchhoff's Rules and Complex DC Circuits. RC Circuits. Household Circuits. Electrical Safety. Conduction of Electrical Signals by Neurons. 19. Magnetism. Magnets. Earth's Magnetic Field. Magnetic Fields. Magnetic Force on a Current-Carrying Conductor. Torque on a Current Loop and Electric Motors. Motion of a Charged Particle in a Magnetic Field. Magnetic Field of a Long, Straight Wire and Ampère's Law. Magnetic Force Between Two Parallel Conductors. Magnetic Fields of a Current Loop and Solenoids. Magnetic Domains. 20. Induced Voltages and Inductance. Induced emf and Magnetic Flux. Faraday's Law of Induction. Motional emf. Lenz's Law Revisited (The Minus Sign in Faraday's Law). Generators. Self-Inductance. RL Circuits. Energy Stored in a Magnetic Field. 21. Alternating Current Circuits and Electromagnetic Waves. Resistors in an AC Circuit. Capacitors in an AC Circuit. Inductors in an AC Circuit. The RLC Series Circuit. Power in an AC Circuit. Resonance in a Series RLC Circuit. The Transformer. Maxwell's Predictions. Hertz's Confirmation of Maxwell's Predictions. Production of Electromagnetic Waves by an Antenna. Properties of Electromagnetic Waves. The Spectrum of Electromagnetic Waves. The Doppler Effect for Electromagnetic Waves. 22. Reflection and Refraction of Light. The Nature of Light. Reflection and Refraction. The Law of Refraction. Dispersion and Prisms. The Rainbow. Huygens's Principle. Total Internal Reflection. 23. Mirrors and Lenses. Flat Mirrors. Images Formed by Spherical Mirrors. Convex Mirrors and Sign Conventions. Images Formed by Refraction. Atmospheric Refraction. Thin Lenses. Lens and Mirror Aberrations. 24. Wave Optics. Conditions for Interference. Young's Double-Slit Interference. Change of Phase Due to Reflection. Interference in Thin Films. Using Interference to Read CD's and DVD's. Diffraction. Single-Slit Diffraction. The Diffraction Grating. Polarization of Light Waves. 25. Optical Instruments. The Camera. The Eye. The Simple Magnifier. The Compound Microscope. The Telescope. Resolution of Single-Slit and Circular Apertures. The Michelson Interferometer. 26. Relativity. Introduction. The Principle of Galilean Relativity. The Speed of Light. The Michelson-Morley Experiment. Einstein's Principle of Relativity. Consequences of Special Relativity. Relativistic Momentum. Relativistic Addition of Velocities. Relativistic Energy and the Equivalence of Mass and Energy. Pair Production and Annihilation. General Relativity. 27. Quantum Physics. Blackbody Radiation and Planck's Hypothesis. The Photoelectric Effect and the Particle Theory of Light. X-Rays. Diffraction of X-Rays by Crystals. The Compton Effect. The Dual Nature of Light and Matter. The Wave Function. The Uncertainty Principle. The Scanning Tunneling Microscope. 28. Atomic Physics. Early Models of the Atom. Atomic Spectra. The Bohr Theory of Hydrogen. Modification of the Bohr Theory. De Broglie Waves and the Hydrogen Atom. Quantum Mechanics and the Hydrogen Atom. The Spin Magnetic Quantum Number. Electron Clouds. The Exclusion Principle and the Periodic Table. Characteristic X-Rays. Atomic Transitions. Lasers and Holography. Energy Bands in Solids. Semiconductor Devices. 29. Nuclear Physics. Some Properties of Nuclei. Binding Energy. Radioactivity. The Decay Processes. Natural Radioactivity. Nuclear Reactions. Medical Applications of Radiation. Radiation Detectors. 30. Nuclear Energy and Elementary Particles. Nuclear Fission. Nuclear Reactors. Nuclear Fusion. Elementary Particles. The Fundamental Forces in Nature. Positrons and Other Antiparticles. Mesons and the Beginning of Particle Physics. Classification of Particles. Conservation Laws. Strange Particles and Strangeness. The Eightfold Way. Quarks. Colored Quarks. Electroweak Theory and the Standard Model. The Cosmic Connection. Problems and Perspectives.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >