Communication Systems Engineering / Edition 2

Hardcover (Print)
Rent
Rent from BN.com
$67.89
(Save 69%)
Est. Return Date: 06/16/2014
Buy New
Buy New from BN.com
$171.38
Used and New from Other Sellers
Used and New from Other Sellers
from $29.14
Usually ships in 1-2 business days
(Save 86%)
Other sellers (Hardcover)
  • All (12) from $29.14   
  • New (7) from $85.95   
  • Used (5) from $29.14   

Overview

Thorough coverage of basic digital communication system principles ensures that readers are exposed to all basic relevant topics in digital communication system design. The use of CD player and JPEG image coding standard as examples of systems that employ modern communication principles allows readers to relate the theory to practical systems. Over 180 worked-out examples throughout the book aids readers in understanding basic concepts. Over 480 problems involving applications to practical systems such as satellite communications systems, ionospheric channels, and mobile radio channels gives readers ample opportunity to practice the concepts they have just learned. With an emphasis on digital communications, Communication Systems Engineering, Second Edition introduces the basic principles underlying the analysis and design of communication systems. In addition, this book gives a solid introduction to analog communications and a review of important mathematical foundation topics. New material has been added on wireless communication systems—GSM and CDMA/IS-94; turbo codes and iterative decoding; multicarrier (OFDM) systems; multiple antenna systems. Includes thorough coverage of basic digital communication system principles—including source coding, channel coding, baseband and carrier modulation, channel distortion, channel equalization, synchronization, and wireless communications. Includes basic coverage of analog modulation such as amplitude modulation, phase modulation, and frequency modulation as well as demodulation methods. For use as a reference for electrical engineers for all basic relevant topics in digital communication system design.

Read More Show Less

Product Details

  • ISBN-13: 9780130617934
  • Publisher: Prentice Hall
  • Publication date: 8/28/2001
  • Edition description: REV
  • Edition number: 2
  • Pages: 801
  • Sales rank: 757,297
  • Product dimensions: 7.00 (w) x 8.80 (h) x 1.70 (d)

Read an Excerpt

The objective of this book is to provide an introduction to the basic principles in the analysis and design of communication systems. It is primarily intended for use as a text for a first course in communications, either at a senior level or at a first-year graduate level.

BROAD TOPICAL COVERAGE

Although we have placed a very strong emphasis on digital communications, we have provided a review of important mathematical foundational topics and a solid introduction to analog communications. The major topics covered are:

  • A review of frequency domain analysis of signals and systems, and the characterization of random processes (Chapters 2 and 4)
  • An introduction to analog signal transmission and reception (Chapters 3 and 5)
  • An introduction to digital communications (Chapters 6-10)
EMPHASIS ON DIGITAL COMMUNICATIONS

Our motivation for emphasizing digital communications is due to the technological developments that have occurred during the past five decades. Today, digital communication systems are in common use and generally carry the bulk of our daily information transmission through a variety of communications media, such as wireline telephone channels, microwave radio, fiber optic channels, and satellite channels. We are currently witnessing an explosive growth in the development of personal communication systems and ultrahigh speed communication networks, which are based on digital transmission of the information, whether it is voice, still images, or video. We anticipate that, in the near future, we will witness a replacement of the current analog AM and FM radio and television broadcast by digital transmission systems.

The development of sophisticated, high-speed digital communication systems has been accelerated by concurrent developments in inexpensive high speed integrated circuits (IC) and programmable digital signal processing chips. The developments in Microelectronic IC fabrication have made possible the implementation of high-speed, high precision A/D converters, of powerful error-correcting coders/decoders, and of complex digital modulation techniques. All of these technological developments point to a continuation in the trend toward increased use of digital communications as a means for transmitting information.

OVERVIEW OF THE TEXT

It is assumed that students using this book have a basic understanding of linear system theory, both continuous and discrete, including a working knowledge of Fourier series and Fourier transform techniques. Chapter 2 provides a review of basic material on signals and systems and establishes the necessary notation used in subsequent chapters. It is also assumed that students have had a first course in probability. Such courses are currently required in many undergraduate electrical engineering and computer engineering programs. Chapter 4 provides a review of probability and random processes to the extent that is necessary for a first course in communications.

Chapter 3 treats modulation and demodulation of analog signals. This treatment includes amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM). Radio and television broadcasting and mobile radio cellular systems are discussed as examples of analog communication systems. Chapter 5 continues the treatment of analog communication systems by analyzing the effect of additive noise in the demodulation of AM, FM, and PM signals. The phase-locked loop, which is used for estimating the phase of a sinusoidal carrier in both analog and digital communication systems is also described in Chapter 5. The chapter concludes with a treatment of the effect of transmission losses and the characterization of noise sources in communication systems.

A logical beginning in the introduction of digital communication systems analysis and design is the characterization of information sources and source encoding. Chapter 6 is devoted to this topic. In this chapter we introduce the reader to the modeling of information sources, both discrete and continuous (analog), and the basic mathematical concepts of entropy and mutual information. Our discussion of source encoding for discrete sources includes the Huffman coding algorithm and the Lempel-Ziv algorithm. For the case of analog sources, we treat both scalar and vector quantization and describe the common waveform-coding techniques, namely, PCM, DPCM, and DM. We also describe the LPC-based source modeling method. As practical examples of the sourcecoding methods described in this chapter we cite the digital speech transmission systems in the telephone plant, the digital audio recording systems as embodied in the compact disc (CD) player and the JPEG image-coding standard.

Digital modulation and demodulation techniques are described in Chapter 7. Binary and nonbinary modulation methods are described based on a geometric representation of signals, and their error-rate performance is evaluated and compared. This chapter also describes symbol synchronization methods for digital communication systems.

Chapter 8 treats digital transmission through bandlimited AWGN channels. In this chapter we derive the power-spectral density of linearly modulated baseband signals and consider the problem of signal design for a bandlimited channel. We show that the effect of channel distortion is to introduce intersymbol interference (ISI), which can be eliminated or minimized by proper signal design. The use of linear and nonlinear adaptive equalizers for reducing the effect of ISI is also described.

Chapter 9 treats the topic of channel coding and decoding. The capacity of a communication channel is first defined, and the capacity of the Gaussian channel is determined. Linear block codes and convolutional codes are introduced and appropriate decoding algorithms are described. The benefits of coding for bandwidth constrained channels are also described. The final section of this chapter presents three practical applications of coding.

The last chapter of this book treats topics in wireless communications. First, we consider the characterization of fading multipath channels and describe the effects of such channels on wireless digital communication systems. The design of signals that are effective in mitigating this type of channel distortion is also considered. Second, we describe the class of continuous-phase modulated signals, which are especially suitable for digital communication in wireless channels. Finally, we treat the class of spreadspectrum signals, which are suitable for mufti-user wireless communication systems.

EXAMPLES AND HOMEWORK PROBLEMS

We have included a large number of carefully chosen examples and homework problems. The text contains over 180 worked-out examples and over 480 problems. Examples and problems range from simple exercises to more challenging and thought-provoking problems. A Solutions Manual is available free to all adopting faculty, which is provided in both typeset form and as a diskette formatted in LATEX. Solutions are not available for sale to students. This will enable instructors to print out solutions in any configuration easily.

COURSE OPTIONS

This book can serve as a text in either a one- or two-semester course in communication system. An important consideration in the design of the course is whether or not the students have had a prior course in probability and random processes. Another important consideration is whether or not analog modulation and demodulation techniques are to be covered. Here, we outline three scenarios. Others are certainly possible.

  • A one-term course in analog and digital communication: Selected review sections from Chapters 2 and 4, all of chapters 3, 5, 7, and 8, and selections from chapters 6, 9, and 10.
  • A one-term course in digital communication: Selected review sections from Chapters 2 and 4, and Chapters 6-10.
  • A two-term course sequence on analog and digital communications:
    (a) Chapters 2-6 for the first course.
    (b) Chapters 7-10 for the second course.

We wish to thank Gloria Doukakis for her assistance in the preparation of the manuscript.

John Proakis
Adjunct Professor,
University of California at San Diego and Professor Emeritus,
Masoud Salehi
Northeastern University

Read More Show Less

Table of Contents

(NOTE: Each chapter concludes with Further Reading and Problems.)

1. Introduction.

Historical Review. Elements of an Electrical Communication System. Communication Channels and Their Characteristics. Mathematical Models for Communication Channels. Organization of the Book.

2. Frequency Domain Analysis of Signals and Systems.

Fourier Series. Fourier Transforms. Power and Energy. Sampling of Bandlimited Signals. Bandpass Signals.

3. Analog Signal Transmission and Reception.

Introduction to Modulation. Amplitude Modulation (AM). Angle Modulation. Radio and Television Broadcasting. Mobile Radio Stations.

4. Random Processes.

Probability and Random Variables. Random Processes: Basic Concepts. Random Processes in the Frequency Domain. Gaussian and White Processes. Bandlimited Processes and Sampling. Bandpass Processes.

5. Effect of Noise on Analog Communication Systems.

Effect of Noise on Linear-Modulation Systems. Carrier-Phase Estimation with a Phase-Locked Loop (PLL). Effect of Noise on Angle Modulation. Comparison of Analog-Modulation Systems. Effects of Transmission Losses and Noise in Analog Communication Systems.

6. Information Sources and Source Coding.

Modeling of Information Sources. Source-Coding Theorem. Source-Coding Algorithms. Rate-Distortion Theory. Quantization. Waveform Coding. Analysis-Synthesis Techniques. Digital Audio Transmission and Digital Audio Recording. The JPEG Image-Coding Standard.

7. Digital Transmission through the Additive White Gaussian Noise Channel.

Geometric Representation of Signal Waveforms. Pulse Amplitude Modulation. Two-Dimensional Signal Waveforms. Multidimensional Signal Waveforms. Optimum Receiver for Digitally Modulated Signals in Additive White Gaussian Noise. Probability of Error for Signal Detection in Additive White Gaussian Noise. Performance Analysis for Wireline and Radio Communication Channels. Symbol Synchronization.

8. Digital Transmission through Bandlimited AWGN Channels.

Digital Transmission through Bandlimited Channels. The Power Spectrum of Digitally Modulated Signals. Signal Design for Bandlimited Channels. Probability of Error in Detection of Digital PAM. Digitally Modulated Signals with Memory. System Design in the Presence of Channel Distortion. Multicarrier Modulation and OFDM.

9. Channel Capacity and Coding.

Modeling of Communication Channels. Channel Capacity. Bounds on Communication. Coding for Reliable Communication. Linear Block Codes. Cyclic Codes. Convolutional Codes. Complex Codes Based on Combination of Simple Codes. Coding for Bandwidth-Constrained Channels. Practical Applications of Coding.

10. Wireless Communications.

Digital Transmission on Fading Multipath Channels. Continuous Carrier-Phase Modulation. Spread-Spectrum Communication Systems. Digital Cellular Communication Systems.

Appendix A: The Probability of Error for Multichannel Reception of Binary Signals.

References.

Index.

Read More Show Less

Preface

The objective of this book is to provide an introduction to the basic principles in the analysis and design of communication systems. It is primarily intended for use as a text for a first course in communications, either at a senior level or at a first-year graduate level.

BROAD TOPICAL COVERAGE

Although we have placed a very strong emphasis on digital communications, we have provided a review of important mathematical foundational topics and a solid introduction to analog communications. The major topics covered are:

  • A review of frequency domain analysis of signals and systems, and the characterization of random processes (Chapters 2 and 4)
  • An introduction to analog signal transmission and reception (Chapters 3 and 5)
  • An introduction to digital communications (Chapters 6-10)

EMPHASIS ON DIGITAL COMMUNICATIONS

Our motivation for emphasizing digital communications is due to the technological developments that have occurred during the past five decades. Today, digital communication systems are in common use and generally carry the bulk of our daily information transmission through a variety of communications media, such as wireline telephone channels, microwave radio, fiber optic channels, and satellite channels. We are currently witnessing an explosive growth in the development of personal communication systems and ultrahigh speed communication networks, which are based on digital transmission of the information, whether it is voice, still images, or video. We anticipate that, in the near future, we will witness a replacement of the current analog AM and FM radio and television broadcast by digital transmission systems.

The development of sophisticated, high-speed digital communication systems has been accelerated by concurrent developments in inexpensive high speed integrated circuits (IC) and programmable digital signal processing chips. The developments in Microelectronic IC fabrication have made possible the implementation of high-speed, high precision A/D converters, of powerful error-correcting coders/decoders, and of complex digital modulation techniques. All of these technological developments point to a continuation in the trend toward increased use of digital communications as a means for transmitting information.

OVERVIEW OF THE TEXT

It is assumed that students using this book have a basic understanding of linear system theory, both continuous and discrete, including a working knowledge of Fourier series and Fourier transform techniques. Chapter 2 provides a review of basic material on signals and systems and establishes the necessary notation used in subsequent chapters. It is also assumed that students have had a first course in probability. Such courses are currently required in many undergraduate electrical engineering and computer engineering programs. Chapter 4 provides a review of probability and random processes to the extent that is necessary for a first course in communications.

Chapter 3 treats modulation and demodulation of analog signals. This treatment includes amplitude modulation (AM), frequency modulation (FM), and phase modulation (PM). Radio and television broadcasting and mobile radio cellular systems are discussed as examples of analog communication systems. Chapter 5 continues the treatment of analog communication systems by analyzing the effect of additive noise in the demodulation of AM, FM, and PM signals. The phase-locked loop, which is used for estimating the phase of a sinusoidal carrier in both analog and digital communication systems is also described in Chapter 5. The chapter concludes with a treatment of the effect of transmission losses and the characterization of noise sources in communication systems.

A logical beginning in the introduction of digital communication systems analysis and design is the characterization of information sources and source encoding. Chapter 6 is devoted to this topic. In this chapter we introduce the reader to the modeling of information sources, both discrete and continuous (analog), and the basic mathematical concepts of entropy and mutual information. Our discussion of source encoding for discrete sources includes the Huffman coding algorithm and the Lempel-Ziv algorithm. For the case of analog sources, we treat both scalar and vector quantization and describe the common waveform-coding techniques, namely, PCM, DPCM, and DM. We also describe the LPC-based source modeling method. As practical examples of the sourcecoding methods described in this chapter we cite the digital speech transmission systems in the telephone plant, the digital audio recording systems as embodied in the compact disc (CD) player and the JPEG image-coding standard.

Digital modulation and demodulation techniques are described in Chapter 7. Binary and nonbinary modulation methods are described based on a geometric representation of signals, and their error-rate performance is evaluated and compared. This chapter also describes symbol synchronization methods for digital communication systems.

Chapter 8 treats digital transmission through bandlimited AWGN channels. In this chapter we derive the power-spectral density of linearly modulated baseband signals and consider the problem of signal design for a bandlimited channel. We show that the effect of channel distortion is to introduce intersymbol interference (ISI), which can be eliminated or minimized by proper signal design. The use of linear and nonlinear adaptive equalizers for reducing the effect of ISI is also described.

Chapter 9 treats the topic of channel coding and decoding. The capacity of a communication channel is first defined, and the capacity of the Gaussian channel is determined. Linear block codes and convolutional codes are introduced and appropriate decoding algorithms are described. The benefits of coding for bandwidth constrained channels are also described. The final section of this chapter presents three practical applications of coding.

The last chapter of this book treats topics in wireless communications. First, we consider the characterization of fading multipath channels and describe the effects of such channels on wireless digital communication systems. The design of signals that are effective in mitigating this type of channel distortion is also considered. Second, we describe the class of continuous-phase modulated signals, which are especially suitable for digital communication in wireless channels. Finally, we treat the class of spreadspectrum signals, which are suitable for mufti-user wireless communication systems.

EXAMPLES AND HOMEWORK PROBLEMS

We have included a large number of carefully chosen examples and homework problems. The text contains over 180 worked-out examples and over 480 problems. Examples and problems range from simple exercises to more challenging and thought-provoking problems. A Solutions Manual is available free to all adopting faculty, which is provided in both typeset form and as a diskette formatted in LATEX. Solutions are not available for sale to students. This will enable instructors to print out solutions in any configuration easily.

COURSE OPTIONS

This book can serve as a text in either a one- or two-semester course in communication system. An important consideration in the design of the course is whether or not the students have had a prior course in probability and random processes. Another important consideration is whether or not analog modulation and demodulation techniques are to be covered. Here, we outline three scenarios. Others are certainly possible.

  • A one-term course in analog and digital communication: Selected review sections from Chapters 2 and 4, all of chapters 3, 5, 7, and 8, and selections from chapters 6, 9, and 10.
  • A one-term course in digital communication: Selected review sections from Chapters 2 and 4, and Chapters 6-10.
  • A two-term course sequence on analog and digital communications:
    (a) Chapters 2-6 for the first course.
    (b) Chapters 7-10 for the second course.

We wish to thank Gloria Doukakis for her assistance in the preparation of the manuscript.

John Proakis
Adjunct Professor,
University of California at San Diego
and Professor Emeritus,
Masoud Salehi
Northeastern University

Read More Show Less

Customer Reviews

Average Rating 5
( 1 )
Rating Distribution

5 Star

(1)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted June 25, 2002

    Landmark text.

    Proakis is known for his wonderfully simple and eloquently written texts, which convey significant concepts in concise, clear form without compromising an ounce of quality in the message. This text is a testimony to this. It is best suited for one who has a prior acquaintance with basic analog/digital communication theory, probability theory, and signals/systems.

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)