Compactifications of Symmetric and Locally Symmetric Spaces / Edition 1

Compactifications of Symmetric and Locally Symmetric Spaces / Edition 1

by Armand Borel, Lizhen Ji
     
 

Noncompact symmetric and locally symmetric spaces naturally appear in many mathematical theories, including analysis (representation theory, nonabelian harmonic analysis), number theory (automorphic forms), algebraic geometry (modulae) and algebraic topology (cohomology of discrete groups). In most applications it is necessary to form an appropriate

See more details below

Overview

Noncompact symmetric and locally symmetric spaces naturally appear in many mathematical theories, including analysis (representation theory, nonabelian harmonic analysis), number theory (automorphic forms), algebraic geometry (modulae) and algebraic topology (cohomology of discrete groups). In most applications it is necessary to form an appropriate compactification of the space. The literature dealing with such compactifications is vast. The main purpose of this book is to introduce uniform constructions of most of the known compactifications with emphasis on their geometric and topological structures.

The book is divided into three parts. Part I studies compactifications of Riemannian symmetric spaces and their arithmetic quotients. Part II is a study of compact smooth manifolds. Part III studies the compactification of locally symmetric spaces.

Familiarity with the theory of semisimple Lie groups is assumed, as is familiarity with algebraic groups defined over the rational numbers in later parts of the book, although most of the pertinent material is recalled as presented. Otherwise, the book is a self-contained reference aimed at graduate students and research mathematicians interested in the applications of Lie theory and representation theory to diverse fields of mathematics.

Read More

Product Details

ISBN-13:
9780817632472
Publisher:
Birkhauser Verlag
Publication date:
12/08/2005
Series:
Mathematics: Theory and Applications Series
Edition description:
2006
Pages:
479
Product dimensions:
9.21(w) x 6.14(h) x 1.06(d)

Table of Contents

* Preface
• Introduction Part I: Compactifications of Riemannian Symmetric Spaces
• Review of Classical Compactifications of Symmetric Spaces
• Uniform Construction of Compactifications of Symmetric Spaces
• Properties of Compactifications of Symmetric Spaces Part II: Smooth Compactifications of Semisimple Symmetric Spaces
• Smooth Compactifications of Riemannian Symmetric Spaces G / K
• Semisimple Symmetric Spaces G / H
• The Real Points of Complex Symmetric Spaces Defined Over R
• The DeConcini–Procesi Compactification of a Complex Symmetric Space and its Real Points
• The Oshima–Sekiguchi Compactification of G / K and Comparison with G/Hw (R) Part III: Compactifications of Locally Symmetric Spaces
• Classical Compactifications of Locally Symmetric Spaces
• Uniform Construction of Compactifications of Locally Symmetric Spaces
• Properties of Compactifications of Locally Symmetric Spaces
• Subgroup Compactifications of o \ G
• Metric Properties of Compactifications of Locally Symmetric Spaces o \ X
• References
• Index

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >