Computational Auditory Scene Analysis: Principles, Algorithms and Applications / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $96.33
Usually ships in 1-2 business days
(Save 25%)
Other sellers (Hardcover)
  • All (8) from $96.33   
  • New (6) from $96.33   
  • Used (2) from $110.30   


How can we engineer systems capable of "cocktail party" listening?

Human listeners are able to perceptually segregate one sound source from an acoustic mixture, such as a single voice from a mixture of other voices and music at a busy cocktail party. How can we engineer "machine listening" systems that achieve this perceptual feat?

Albert Bregman's book Auditory Scene Analysis, published in 1990, drew an analogy between the perception of auditory scenes and visual scenes, and described a coherent framework for understanding the perceptual organization of sound. His account has stimulated much interest in computational studies of hearing. Such studies are motivated in part by the demand for practical sound separation systems, which have many applications including noise-robust automatic speech recognition, hearing prostheses, and automatic music transcription. This emerging field has become known as computational auditory scene analysis (CASA).

Computational Auditory Scene Analysis: Principles, Algorithms, and Applications provides a comprehensive and coherent account of the state of the art in CASA, in terms of the underlying principles, the algorithms and system architectures that are employed, and the potential applications of this exciting new technology. With a Foreword by Bregman, its chapters are written by leading researchers and cover a wide range of topics including:

  • Estimation of multiple fundamental frequencies
  • Feature-based and model-based approaches to CASA
  • Sound separation based on spatial location
  • Processing for reverberant environments
  • Segregation of speech and musical signals
  • Automatic speech recognition in noisy environments
  • Neural and perceptual modeling of auditory organization

The text is written at a level that will be accessible to graduate students and researchers from related science and engineering disciplines. The extensive bibliography accompanying each chapter will also make this book a valuable reference source. A web site accompanying the text,, features software tools and sound demonstrations.

Read More Show Less

Product Details

  • ISBN-13: 9780471741091
  • Publisher: Wiley
  • Publication date: 9/29/2006
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 395
  • Product dimensions: 6.44 (w) x 9.29 (h) x 1.02 (d)

Meet the Author

Editors DeLIANG WANG and GUY J. BROWN are well-known for their contributions to the development of CASA. Wang is a Professor in the Department of Computer Science and Engineering and the Center for Cognitive Science at The Ohio State University. He is an IEEE Fellow. Brown is a Senior Lecturer in the Department of Computer Science at the University of Sheffield, UK.

Read More Show Less

Table of Contents





1. Fundamentals of Computational Auditory Scene Analysis (DeLiang Wang and Guy J. Brown).

1.1 Human Auditory Scene Analysis.

1.1.1 Structure and Function of the Auditory System.

1.1.2 Perceptual Organization of Simple Stimuli.

1.1.3 Perceptual Segregation of Speech from Other Sounds.

1.1.4 Perceptual Mechanisms.

1.2 Computational Auditory Scene Analysis (CASA).

1.2.1 What Is CASA?

1.2.2 What Is the Goal of CASA?

1.2.3 Why CASA?

1.3 Basics of CASA Systems.

1.3.1 System Architecture.

1.3.2 Cochleagram.

1.3.3 Correlogram.

1.3.4 Cross-Correlogram.

1.3.5 Time-Frequency Masks.

1.3.6 Resynthesis.

1.4 CASA Evaluation.

1.4.1 Evaluation Criteria.

1.4.2 Corpora.

1.5 Other Sound Separation Approaches.

1.6 A Brief History of CASA (Prior to 2000).

1.6.1 Monaural CASA Systems.

1.6.2 Binaural CASA Systems.

1.6.3 Neural CASA Models.

1.7 Conclusions 36



2. Multiple F0 Estimation (Alain de Cheveigné).

2.1 Introduction.

2.2 Signal Models.

2.3 Single-Voice F0 Estimation.

2.3.1 Spectral Approach.

2.3.2 Temporal Approach.

2.3.3 Spectrotemporal Approach.

2.4 Multiple-Voice F0 Estimation.

2.4.1 Spectral Approach.

2.4.2 Temporal Approach.

2.4.3 Spectrotemporal Approach.

2.5 Issues.

2.5.1 Spectral Resolution.

2.5.2 Temporal Resolution.

2.5.3 Spectrotemporal Resolution.

2.6 Other Sources of Information.

2.6.1 Temporal and Spectral Continuity.

2.6.2 Instrument Models.

2.6.3 Learning-Based Techniques.

2.7 Estimating the Number of Sources.

2.8 Evaluation.

2.9 Application Scenarios.

2.10 Conclusion.



3. Feature-Based Speech Segregation (DeLiang Wang).

3.1 Introduction.

3.2 Feature Extraction.

3.2.1 Pitch Detection.

3.2.2 Onset and Offset Detection.

3.2.3 Amplitude Modulation Extraction.

3.2.4 Frequency Modulation Detection.

3.3 Auditory Segmentation.

3.3.1 What Is the Goal of Auditory Segmentation?

3.3.2 Segmentation Based on Cross-Channel Correlation and Temporal Continuity.

3.3.3 Segmentation Based on Onset and Offset Analysis.

3.4 Simultaneous Grouping.

3.4.1 Voiced Speech Segregation.

3.4.2 Unvoiced Speech Segregation.

3.5 Sequential Grouping.

3.5.1 Spectrum-Based Sequential Grouping.

3.5.2 Pitch-Based Sequential Grouping.

3.5.3 Model-Based Sequential Grouping.

3.6 Discussion.



4. Model-Based Scene Analysis (Daniel P. W. Ellis).

4.1 Introduction.

4.2 Source Separation as Inference.

4.3 Hidden Markov Models.

4.4 Aspects of Model-Based Systems.

4.4.1 Constraints: Types and Representations.

4.4.2 Fitting Models.

4.4.3 Generating Output.

4.5 Discussion.

4.5.1 Unknown Interference.

4.5.2 Ambiguity and Adaptation.

4.5.3 Relations to Other Separation Approaches.

4.6 Conclusions.


5. Binaural Sound Localization (Richard M. Stern, Guy J. Brown, and DeLiang Wang).

5.1 Introduction.

5.2 Physical and Physiological Mechanisms Underlying Auditory Localization.

5.2.1 Physical Cues.

5.2.2 Physiological Estimation of ITD and IID.

5.3 Spatial Perception of Single Sources.

5.3.1 Sensitivity to Differences in Interaural Time and Intensity.

5.3.2 Lateralization of Single Sources.

5.3.3 Localization of Single Sources.

5.3.4 The Precedence Effect.

5.4 Spatial Perception of Multiple Sources.

5.4.1 Localization of Multiple Sources.

5.4.2 Binaural Signal Detection.

5.5 Models of Binaural Perception.

5.5.1 Classical Models of Binaural Hearing.

5.5.2 Cross-Correlation-Based Models of Binaural Interaction.

5.5.3 Some Extensions to Cross-Correlation-Based Binaural Models.

5.6 Multisource Sound Localization.

5.6.1 Estimating Source Azimuth from Interaural Cross-Correlation.

5.6.2 Methods for Resolving Azimuth Ambiguity.

5.6.3 Localization of Moving Sources.

5.7 General Discussion.



6. Localization-Based Grouping (Albert S. Feng and Douglas L. Jones).

6.1 Introduction.

6.2 Classical Beamforming Techniques.

6.2.1 Fixed Beamforming Techniques.

6.2.2 Adaptive Beamforming Techniques.

6.2.3 Independent Component Analysis Techniques.

6.2.4 Other Localization-Based Techniques.

6.3 Location-Based Grouping Using Interaural Time Difference Cue.

6.4 Location-Based Grouping Using Interaural Intensity Difference Cue.

6.5 Location-Based Grouping Using Multiple Binaural Cues.

6.6 Discussion and Conclusions.



7. Reverberation (Guy J. Brown and Kalle J. Palomäki).

7.1 Introduction.

7.2 Effects of Reverberation on Listeners.

7.2.1 Speech Perception.

7.2.2 Sound Localization.

7.2.3 Source Separation and Signal Detection.

7.2.4 Distance Perception.

7.2.5 Auditory Spatial Impression.

7.3 Effects of Reverberation on Machines.

7.4 Mechanisms Underlying Robustness to Reverberation in Human Listeners.

7.4.1 The Role of Slow Temporal Modulations in Speech Perception.

7.4.2 The Binaural Advantage.

7.4.3 The Precedence Effect.

7.4.4 Perceptual Compensation for Spectral Envelope Distortion.

7.5 Reverberation-Robust Acoustic Processing.

7.5.1 Dereverberation.

7.5.2 Reverberation-Robust Acoustic Features.

7.5.3 Reverberation Masking.

7.6 CASA and Reverberation.

7.6.1 Systems Based on Directional Filtering.

7.6.2 CASA for Robust ASR in Reverberant Conditions.

7.6.3 Systems that Use Multiple Cues.

7.7 Discussion and Conclusions.



8. Analysis of Musical Audio Signals (Masataka Goto).

8.1 Introduction.

8.2 Music Scene Description.

8.2.1 Music Scene Descriptions.

8.2.2 Difficulties Associated with Musical Audio Signals.

8.3 Estimating Melody and Bass Lines.

8.3.1 PreFEst-front-end: Forming the Observed Probability Density Functions.

8.3.2 PreFEst-core: Estimating the F0’s Probability Density Function.

8.3.3 PreFEst-back-end: Sequential F0 Tracking by Multiple-Agent Architecture.

8.3.4 Other Methods.

8.4 Estimating Beat Structure.

8.4.1 Estimating Period and Phase.

8.4.2 Dealing with Ambiguity.

8.4.3 Using Musical Knowledge.

8.5 Estimating Chorus Sections and Repeated Sections.

8.5.1 Extracting Acoustic Features and Calculating Their Similarity.

8.5.2 Finding Repeated Sections.

8.5.3 Grouping Repeated Sections.

8.5.4 Detecting Modulated Repetition.

8.5.5 Selecting Chorus Sections.

8.5.6 Other Methods.

8.6 Discussion and Conclusions.

8.6.1 Importance.

8.6.2 Evaluation Issues.

8.6.3 Future Directions.


9. Robust Automatic Speech Recognition (Jon Barker).

9.1 Introduction.

9.2 ASA and Speech Perception in Humans.

9.2.1 Speech Perception and Simultaneous Grouping.

9.2.2 Speech Perception and Sequential Grouping.

9.2.3 Speech Schemes.

9.2.4 Challenges to the ASA Account of Speech Perception.

9.2.5 Interim Summary.

9.3 Speech Recognition by Machine.

9.3.1 The Statistical Basis of ASR.

9.3.2 Traditional Approaches to Robust ASR.

9.3.3 CASA-Driven Approaches to ASR.

9.4 Primitive CASA and ASR.

9.4.1 Speech and Time-Frequency Masking.

9.4.2 The Missing-Data Approach to ASR.

9.4.3 Marginalization-Based Missing-Data ASR Systems.

9.4.4 Imputation-Based Missing-Data Solutions.

9.4.5 Estimating the Missing-Data Mask.

9.4.6 Difficulties with the Missing-Data Approach.

9.5 Model-Based CASA and ASR.

9.5.1 The Speech Fragment Decoding Framework.

9.5.2 Coupling Source Segregation and Recognition.

9.6 Discussion and Conclusions.

9.7 Concluding Remarks.


10. Neural and Perceptual Modeling (Guy J. Brown and DeLiang Wang).

10.1 Introduction.

10.2 The Neural Basis of Auditory Grouping.

10.2.1 Theoretical Solutions to the Binding Problem.

10.2.2 Empirical Results on Binding and ASA.

10.3 Models of Individual Neurons.

10.3.1 Relaxation Oscillators.

10.3.2 Spike Oscillators.

10.3.3 A Model of a Specific Auditory Neuron.

10.4 Models of Specific Perceptual Phenomena.

10.4.1 Perceptual Streaming of Tone Sequences.

10.4.2 Perceptual Segregation of Concurrent Vowels with Different F0s.

10.5 The Oscillatory Correlation Framework for CASA.

10.5.1 Speech Segregation Based on Oscillatory Correlation.

10.6 Schema-Driven Grouping.

10.7 Discussion.

10.7.1 Temporal or Spatial Coding of Auditory Grouping.

10.7.2 Physiological Support for Neural Time Delays.

10.7.3 Convergence of Psychological, Physiological, and Computational Approaches.

10.7.4 Neural Models as a Framework for CASA.

10.7.5 The Role of Attention.

10.7.6 Schema-Based Organization.




Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)