Computational Materials Science: An Introduction, Second Edition

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.

1133955444
Computational Materials Science: An Introduction, Second Edition

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.

170.0 In Stock
Computational Materials Science: An Introduction, Second Edition

Computational Materials Science: An Introduction, Second Edition

by June Gunn Lee
Computational Materials Science: An Introduction, Second Edition

Computational Materials Science: An Introduction, Second Edition

by June Gunn Lee

eBook

$170.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.


Product Details

ISBN-13: 9781498749756
Publisher: CRC Press
Publication date: 11/25/2016
Sold by: Barnes & Noble
Format: eBook
Pages: 376
File size: 7 MB

About the Author

June Gunn Lee is an emeritus research fellow in the Computational Science Center at the Korea Institute of Science and Technology, where he has worked for 28 years. Currently, he is also lecturing at the University of Seoul. He has published about 70 papers on engineering ceramics and computational materials science. He received his M.S. and Ph.D. in Materials Science and Engineering from the University of Utah, U.S.A.

Table of Contents

Preface. Chapter 1 Introduction. Chapter 2 Molecular Dynamics (MD). Chapter 3 MD Exercises with XMD and LAMMPS. Chapter 4 First-principles Methods. Chapter 5 Density Functional Theory (DFT). Chapter 6 Treating Solids. Chapter 7 DFT Exercises with VASP. Appendix. Index.

From the B&N Reads Blog

Customer Reviews