Computational Methods for Kinetic Models of Magnetically Confined Plasmas
Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy component fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field.
1000915787
Computational Methods for Kinetic Models of Magnetically Confined Plasmas
Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy component fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field.
54.99 In Stock
Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Computational Methods for Kinetic Models of Magnetically Confined Plasmas

Paperback(Softcover reprint of the original 1st ed. 1986)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Because magnetically confined plasmas are generally not found in a state of thermodynamic equilibrium, they have been studied extensively with methods of applied kinetic theory. In closed magnetic field line confinement devices such as the tokamak, non-Maxwellian distortions usually occur as a result of auxiliary heating and transport. In magnetic mirror configurations even the intended steady state plasma is far from local thermodynamic equilibrium because of losses along open magnetic field lines. In both of these major fusion devices, kinetic models based on the Boltzmann equation with Fokker-Planck collision terms have been successful in representing plasma behavior. The heating of plasmas by energetic neutral beams or microwaves, the production and thermalization of a-particles in thermonuclear reactor plasmas, the study of runaway electrons in tokamaks, and the performance of two-energy component fusion reactors are some examples of processes in which the solution of kinetic equations is appropriate and, moreover, generally necessary for an understanding of the plasma dynamics. Ultimately, the problem is to solve a nonlinear partial differential equation for the distribution function of each charged plasma species in terms of six phase space variables and time. The dimensionality of the problem may be reduced through imposing certain symmetry conditions. For example, fewer spatial dimensions are needed if either the magnetic field is taken to be uniform or the magnetic field inhomogeneity enters principally through its variation along the direction of the field.

Product Details

ISBN-13: 9783642859564
Publisher: Springer Berlin Heidelberg
Publication date: 05/04/2012
Series: Scientific Computation
Edition description: Softcover reprint of the original 1st ed. 1986
Pages: 199
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1 Introduction.- References.- 2 Fokker — Planck Models of Multispecies Plasmas in Uniform Magnetic Fields.- 2.1. Mathematical Model.- 2.2. Solution for a Multispecies Plasma in a One-Dimensional Velocity Space.- 2.3. Solution in a Two-Dimensional Velocity Space Using an Expansion in Pitch-Angle.- 2.4. Solution Using Finite-Differences in a Two-Dimensional Velocity Space.- References.- 3 Collisional Kinetic Models of Multispecies Plasmas in Nonuniform Magnetic Fields.- 3.1. Mathematical Model.- 3.2. Numerical Solution of Bounce-Averaged Fokker — Planck Equations.- 3.3. Applications.- Appendix 3 A. Coefficients of the Bounce-Averaged Operator.- Appendix 3B. Boundary Layer Diagnostic.- Appendix 3C. Tangent Resonance Phenomena.- Appendix 3D. Wave Models.- References.- 4 A Fokker — Planck/Transport Model for Neutral Beam-Driven Tokamaks.- 4.1. Mathematical Model and Numerical Methods.- 4.2. Applications.- References.
From the B&N Reads Blog

Customer Reviews