Table of Contents
Introduction xi
1 Solid State Structure 1
1.1 Crystalline Lattice 1
1.2 Indication of Crystal Planes and Orientations 5
1.3 The Reciprocal Lattice 6
1.4 X-ray Diffraction by Crystals 7
Exercises for Chapter 1 10
2 Crystal Lattice Vibrations 11
2.1 Dispersion Curves of Lattice Vibrations 11
2.2 Solids Specific Heat 13
2.2.1 Energy Quantization of a Harmonic Oscillator 13
2.2.2 Einstein’s Model of Solids Specific Heat 15
2.2.3 Debye Model of Solids Specific Heat 16
2.3 A Reminder: Standing and Propagating Waves; Group and Phase Velocity 19
Exercises for Chapter 2 21
3 Free Electrons in Metals 23
3.1 Free Electron Density of States 23
3.2 Fermi–Dirac Distribution 24
3.3 Fermi Energy in Metals 25
3.4 Thermionic Emission 27
3.5 The Photoelectric Effect 30
3.6 Electrical Conductivity and Mobility 34
3.7 Galvanomagnetic Effects: Cyclotron Motion and Hall Effect 36
3.7.1 Cyclotron Motion 37
3.7.2 Hall Effect 37
3.8 Appendices on Metals’ Physical Properties and Applications 39
3.8.1 Work Functions of Metals 39
3.8.2 Photomultipliers 40
3.8.2.1 Single-Photon Counting 42
3.8.2.2 Photomultiplier Responsivity Under Continuous Light Intensity 43
3.8.3 Electron Guns 44
Exercises for Chapter 3 45
4 Preliminary Concepts Regarding Semiconductors 49
4.1 Dispersion Curves of Electrons in Solids 49
4.2 Electron Motion Under External Electric Fields 51
4.3 Electrical Conductivity and Charge Carrier Mobility 52
Exercises for Chapter 4 54
5 Charge Carriers Under Thermal Equilibrium 57
5.1 Fundamentals of Energy Band Structure 57
5.2 Electrical Conduction and Hall Effect 58
5.3 Impurities and Crystalline Defects 59
5.4 Fermi–Dirac Distribution and Charge Carrier Concentrations 61
Exercises for Chapter 5 65
6 Charge Carrier Dynamics 67
6.1 Charge Carrier Lifetime 67
6.2 Trapping and Recombination Cross Sections 69
6.2.1 Radiative Transitions 71
6.2.2 Vibrational Transitions 73
6.2.3 Auger Process 73
6.3 Charge-Carriers Drift and Diffusion 74
6.4 Quasi-Fermi Energy 76
6.5 Transient Currents 78
6.5.1 The Continuity Equations 78
6.5.2 Dielectric Relaxation 79
6.5.3 Charge Carrier Transit 80
6.5.3.1 Excess Charge Carrier Drift in an Insulating Semiconductor 83
6.5.3.2 Small Excess Charge Carrier Drift in a Conducting Material 84
6.5.3.3 Small Excess Charge Carrier Drift in a Semiconductor 85
6.5.3.4 Steady Excitation of a Narrow Region with no External Electric Field 86
6.5.3.5 Steady Excitation of a Narrow Region Under a High External Electric Field 87
6.5.3.6 Transient Excitation in a Narrow Region Under a High External Electric Field 88
6.6 Space-Charge Limited Currents 89
6.6.1 Constant Space-Charge Limited Current 91
6.6.2 Transient Space-Charge Limited Current 92
Exercises for Chapter 6 94
7 p–n Junction-Based Devices 97
7.1 The p–n Junction 97
7.2 A Rectifying Diode 100
7.3 Current Breakdown Under Reverse Voltage 102
7.3.1 Introduction 102
7.3.2 Zener Breakdown 102
7.3.3 Avalanche Breakdown 103
7.3.4 Zener Diode 106
7.4 Diode Lasers 106
7.4.1 Introduction 106
7.4.2 Physical Principles of Laser Operation 107
7.4.3 Gallium-Arsenide Based Diode Laser 109
7.4.3.1 Reflection Loss in the Laser Resonator 110
7.4.3.2 Diffraction Loss in a Laser Resonance Cavity 111
7.5 Illuminated p–n Junctions 113
7.6 Bipolar Junction Transistor 116
7.7 Voltage Amplification Circuit 120
Exercises for Chapter 7 121
8 Field-Effect Devices 123
8.1 Space-Charge Layer at a Crystal Surface 123
8.1.1 Surface States 123
8.1.2 Contact Potential 128
8.1.3 An External Voltage 132
8.2 Field-Effect Transistor (FET) 133
8.3 A Source-Follower Circuit 137
Exercises for Chapter 8 139
9 Radiation and Light Detectors 141
9.1 Gamma and X-rays Radiation Detectors 141
9.1.1 Fundamental Construction of a Gamma and X-rays Detector 141
9.1.2 Mechanisms of Charge Carrier Generation 142
9.1.3 Charge Carrier Collection Issues 143
9.1.4 Various Technological Considerations 147
9.2 Light Detectors 149
9.2.1 Light Detection by Photoconductivity 150
9.2.2 Mercury Cadmium Telluride Detectors for the 8–14 μm Range 152
9.2.2.1 Determination of the Cutoff Wavelength 152
9.2.2.2 Response Time Determination 153
9.2.2.3 Diffusion Range and Optimal Detector Thickness 154
9.2.2.4 Calculation of a Detector Dark Resistance 155
9.2.2.5 Calculation of a Detector Responsivity 156
9.2.2.6 Calculation of a Detector-Specific Detectivity 157
Exercises for Chapter 9 160
10 Passive Optical Components 163
10.1 Introduction 163
10.2 Use of Germanium as a Passive Optical Material 163
10.2.1 Preamble 163
10.2.2 Optical Absorption in Germanium 164
10.2.2.1 Lattice Absorption 165
10.2.2.2 Impurities Absorption 166
10.2.2.3 Free (Mobile) Charge Carrier Absorption 167
10.2.3 Optical Quality Assessment of Grown Germanium Parts 169
10.2.3.1 Conductivity Type Probing Using a Hot Electrical Contact 169
10.2.3.2 Four-Point Probe for Specific Resistivity Measurement 169
10.2.3.3 Absorption Coefficient Determination Using Optical Transmission Measurement 170
Exercises for Chapter 10 170
11 History of Crystals Growing and Basic Concepts 173
11.1 Historic Notes on Crystals Growing 173
11.2 Relevant Scales Related to Crystals 174
11.3 Definition of a Single Crystal 174
11.4 The Essence of Crystal Growing 175
12 Solidification Processes 177
12.1 Homogeneous Nucleation 177
12.2 Heterogeneous Nucleation 178
12.3 Layered Growing 180
12.4 Rough and Smooth Growth Surfaces 181
12.4.1 Temkin multilayer Model 182
12.4.2 Occurrence of Facets on Grown Crystals 185
12.5 Solidification Dynamics 186
12.6 Segregation 188
12.7 Pfann’s Normal Freezing Relation 191
12.8 Zone Refining 192
12.9 Diffusion-Controlled Oriented Solidification 193
12.10 Constitutional Supercooling 197
12.11 Factors Affecting the Segregation Coefficient 199
12.11.1 Size Compensation 200
12.11.2 Charge Compensation 200
Exercises for Chapter 12 203
13 Furnace Construction Technology 205
13.1 Preamble 205
13.2 Crucibles 205
13.3 Crystal Growth Atmosphere 206
13.4 Heating Methods 207
13.5 Electrical Insulators 210
13.6 Thermal Insulators 211
13.7 Contacts Between Materials 211
13.8 Temperature Measurement 212
13.9 Temperature Control Methods 219
13.10 Temperature Programming 222
13.11 Open-Circuit and Closed-Circuit Control 222
13.12 General Behavior of a Temperature-Controlled System 222
13.13 Failures Protection 223
Exercises for Chapter 13 223
14 Crystal Growth Methods 225
14.1 Preamble 225
14.2 Choosing the Nutrient Phase 225
14.3 Phase Diagram-Based Conclusions 226
14.4 Single-Crystal Growth from Melt 229
14.4.1 Growth Inside a Crucible or an Ampoule 229
14.4.2 Growth Outside a Crucible or an Ampoule 233
14.5 Vapor Growing of Single Crystals 239
Exercises for Chapter 14 240
15 Examples of Single-Crystal Growth and Mechanical Processing 241
15.1 Preamble 241
15.2 Growth of Neodymium-YAG (Nd:YAG) for Lasers 241
15.2.1 Introduction 241
15.2.2 Raw Material Preparation 242
15.2.3 Single-Crystal Seed Preparation 245
15.2.4 The Nd:YAG Single-Crystal Growth 246
15.2.5 Quality Control of a Grown Crystal 246
15.3 Growth of Zinc Cadmium Telluride Crystals as Substrates and X-ray Detectors 250
15.3.1 Introduction 250
15.3.2 Structure and Physical Properties of CdTe and CdZnTe Crystals 250
15.3.3 Growth of Cadmium Zinc Telluride Crystals 253
15.3.4 Quality Control of Grown Cadmium Zinc Telluride Crystals 254
15.4 Crystal Processing 257
15.4.1 Preamble 257
15.4.2 Crystal Cutting 257
15.4.3 Crystals Polishing and Brushing Up 260
Exercises for Chapter 15 262
Appendix A Greek Alphabet and Phonetic Names 263
Appendix B Table of Physical Constants 265
Appendix C Literature References for Further Reading 267
Index 269