Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems / Edition 1

Paperback (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $36.14
Usually ships in 1-2 business days
(Save 27%)
Other sellers (Paperback)
  • All (9) from $36.14   
  • New (7) from $36.14   
  • Used (2) from $64.13   


This book intends to give an introduction to harmonic maps between a surface and a symmetric manifold and constant mean curvature surfaces as completely integrable systems. The presentation is accessible to undergraduate and graduate students in mathematics but will also be useful to researchers. It is among the first textbooks about integrable systems, their interplay with harmonic maps and the use of loop groups, and it presents the theory, for the first time, from the point of view of a differential geometer. The most important results are exposed with complete proofs (except for the last two chapters, which require a minimal knowledge from the reader). Some proofs have been completely rewritten with the objective, in particular, to clarify the relation between finite mean curvature tori, Wente tori and the loop group approach - an aspect largely neglected in the literature. The book helps the reader to access the ideas of the theory and to acquire a unified perspective of the subject.

Read More Show Less

Product Details

Table of Contents

1 Introduction: Surfaces with prescribed mean curvature.- 2 From minimal surfaces and CMC surfaces to harmonic maps.- 2.1 Minimal surfaces.- 2.2 Constant mean curvature surfaces.- 3 Variational point of view and Noether’s theorem.- 4 Working with the Hopf differential.- 4.1 Appendix.- 5 The Gauss-Codazzi condition.- 5.1 Appendix.- 6 Elementary twistor theory for harmonic maps.- 6.1 Appendix.- 7 Harmonic maps as an integrable system.- 7.1 Maps into spheres.- 7.2 Generalizations.- 7.3 A new setting: loop groups.- 7.4 Examples.- 8 Construction of finite type solutions.- 8.1 Preliminary: the Iwasawa decomposition (for)..- 8.2 Application to loop Lie algebras.- 8.3 The algorithm.- 8.4 Some further properties of finite type solutions.- 9 Constant mean curvature tori are of finite type.- 9.1 The result.- 9.2 Appendix.- 10 Wente tori.- 10.1 CMC surfaces with planar curvature lines.- 10.2 A system of commuting ordinary equations.- 10.3 Recovering a finite type solution.- 10.4 Spectral curves.- 11 Weierstrass type representations.- 11.1 Loop groups decompositions.- 11.2 Solutions in terms of holomorphic data.- 11.3 Meromorphic potentials.- 11.4 Generalizations.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)