Contemporary Abstract Algebra, 7th Edition / Edition 7

Hardcover (Print)
Rent
Rent from BN.com
$24.52
(Save 88%)
Est. Return Date: 09/30/2014
Buy New
Buy New from BN.com
$175.06
Buy Used
Buy Used from BN.com
$132.93
(Save 32%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $29.18
Usually ships in 1-2 business days
(Save 85%)
Other sellers (Hardcover)
  • All (14) from $29.18   
  • New (3) from $68.15   
  • Used (11) from $29.18   

Overview

Contemporary Abstract Algebra 7/e provides a solid introduction to the traditional topics in abstract algebra while conveying to students that it is a contemporary subject used daily by working mathematicians, computer scientists, physicists, and chemists. The text includes numerous figures, tables, photographs, charts, biographies, computer exercises, and suggested readings giving the subject a current feel which makes the content interesting and relevant for students.

Read More Show Less

Product Details

  • ISBN-13: 9780547165097
  • Publisher: Cengage Learning
  • Publication date: 1/8/2009
  • Edition description: Older Edition
  • Edition number: 7
  • Pages: 656
  • Product dimensions: 6.60 (w) x 9.20 (h) x 1.10 (d)

Meet the Author

Joseph Gallian earned his PhD from Notre Dame. In addition to receiving numerous awards for his teaching and exposition, he served, first, as the Second Vice President, and, then, as the President of the MAA. He has served on 40 national committees, chairing ten of them. He has published over 100 articles and authored six books. Numerous articles about his work have appeared in the national news outlets, including the New York Times, the Washington Post, the Boston Globe, and Newsweek, among many others.

Read More Show Less

Table of Contents

PART I. Integers and Equivalence Relations. Preliminaries. Properties of Integers. Modular Arithmetic. Mathematical Induction. Equivalence Relations. Functions (Mappings). Exercises. Computer Exercises. PART II. Groups. 1. Introduction to Groups. Symmetries of a Square. The Dihedral Groups. Exercises. Biography of Neils Abel 2. Groups. Definition and Examples of Groups. Elementary Properties of Groups. Historical Note. Exercises. Computer Exercises. 3. Finite Groups; Subgroups. Terminology and Notation. Subgroup Tests. Examples of Subgroups. Exercises. Computer Exercises. 4. Cyclic Groups. Properties of Cyclic Groups. Classification of Subgroups of Cyclic Groups. Exercises. Computer Exercises. Biography of J. J. Sylvester. Supplementary Exercises for Chapters 1-4. 5. Permutation Groups. Definition and Notation. Cycle Notation. Properties of Permutations. A Check-Digit Scheme Based on D5. Exercises. Computer Exercises. Biography of Augustin Cauchy. 6. Isomorphisms. Motivation. Definition and Examples. Cayley's Theorem. Properties of Isomorphisms. Automorphisms. Exercises. Computer Exercises. Biography of Arthur Cayley. 7. Cosets and Lagrange's Theorem. Properties of Cosets. Lagrange's Theorem and Consequences. An Application of Cosets to Permutation Groups. The Rotation Group of a Cube and a Soccer Ball. Exercises. Computer Exercises. Biography of Joseph Lagrange. 8. External Direct Products. Definition and Examples. Properties of External Direct Products. The Group of Units Modulo n as an External Direct Product. Applications. Exercises. Computer Exercises. Biography of Leonard Adleman. Supplementary Exercises for Chapters 5-8 9. Normal Subgroups and Factor Groups. Normal Subgroups. Factor Groups. Applications of Factor Groups. Internal Direct Products. Exercises. Biography of Évariste Galois 10. Group Homomorphisms. Definition and Examples. Properties of Homomorphisms. The First Isomorphism Theorem. Exercises. Computer Exercises. Biography of Camille Jordan. 11. Fundamental Theorem of Finite Abelian Groups. The Fundamental Theorem. The Isomorphism Classes of Abelian Groups. Proof of the Fundamental Theorem. Exercises. Computer Exercises. Supplementary Exercises for Chapters 9-11. PART III. Rings. 12. Introduction to Rings. Motivation and Definition. Examples of Rings. Properties of Rings. Subrings. Exercises. Computer Exercises. Biography of I. N. Herstein. 13. Integral Domains. Definition and Examples. Fields. Characteristic of a Ring. Exercises. Computer Exercises. Biography of Nathan Jacobson. 14. Ideals and Factor Rings. Ideals. Factor Rings. Prime Ideals and Maximal Ideals. Exercises. Computer Exercises. Biography of Richard Dedekind. Biography of Emmy Noether. Supplementary Exercises for Chapters 12-14. 15. Ring Homomorphisms. Definition and Examples. Properties of Ring Homomorphisms. The Field of Quotients. Exercises. 16. Polynomial Rings. Notation and Terminology. The Division Algorithm and Consequences. Exercises. Biography of Saunders Mac Lane. 17. Factorization of Polynomials. Reducibility Tests. Irreducibility Tests. Unique Factorization in Z[x]. Weird Dice: An Application of Unique Factorization. Exercises. Computer Exercises. Biography of Serge Lang. 18. Divisibility in Integral Domains. Irreducibles, Primes. Historical Discussion of Fermat's Last Theorem. Unique Factorization Domains. Euclidean Domains. Exercises. Computer Exercises. Biography of Sophie Germain. Biography of Andrew Wiles. Supplementary Exercises for Chapters 15-18. PART IV. Fields. 19. Vector Spaces. Definition and Examples. Subspaces. Linear Independence. Exercises. Biography of Emil Artin. Biography of Olga Taussky-Todd. 20. Extension Fields. The Fundamental Theorem of Field Theory. Splitting Fields. Zeros of an Irreducible Polynomial. Exercises. Biography of Leopold Kronecker. 21. Algebraic Extensions. Characterization of Extensions. Finite Extensions. Properties of Algebraic Extensions Exercises. Biography of Irving Kaplansky. 22. Finite Fields. Classification of Finite Fields. Structure of Finite Fields. Subfields of a Finite Field. Exercises. Computer Exercises. Biography of L. E. Dickson. 23. Geometric Constructions. Historical Discussion of Geometric Constructions. Constructible Numbers. Angle-Trisectors and Circle-Squarers. Exercises. Supplementary Exercises for Chapters 19-23. PART V. Special Topics. 24. Sylow Theorems. Conjugacy Classes. The Class Equation. The Probability That Two Elements Commute. The Sylow Theorems. Applications of Sylow Theorems. Exercises. Computer Exercises. Biography of Ludvig Sylow. 25. Finite Simple Groups. Historical Background. Nonsimplicity Tests. The Simplicity of A5. The Fields Medal. The Cole Prize. Exercises. Computer Exercises. Biography of Michael Aschbacher. Biography of Daniel Gorenstein. Biography of John Thompson. 26. Generators and Relations. Motivation. Definitions and Notation. Free Group. Generators and Relations. Classification of Groups of Order up to 15. Characterization of Dihedral Groups. Realizing the Dihedral Groups with Mirrors. Exercises. Biography of Marshall Hall, Jr.. 27. Symmetry Groups. Isometries. Classification of Finite Plane Symmetry Groups. Classification of Finite Group of Rotations in R³. Exercises. 28. Frieze Groups and Crystallographic Groups. The Frieze Groups. The Crystallographic Groups. Identification of Plane Periodic Patterns. Exercises. Biography of M. C. Escher. Biography of George Polya. Biography of John H. Conway. 29. Symmetry and Counting. Motivation. Burnside's Theorem. Applications. Group Action. Exercises. Biography of William Burnside. 30. Cayley Digraphs of Groups. Motivation. The Cayley Digraph of a Group. Hamiltonian Circuits and Paths. Some Applications. Exercises. Biography of William-Rowan Hamilton. Biography of Paul Erdös. 31. Introduction to Algebraic Coding Theory. Motivation. Linear Codes. Parity-Check Matrix Decoding. Coset Decoding. Historical Note: The Ubiquitous Reed-Solomon Codes. Exercises. Biography of Richard W. Hamming. Biography of Jessie MacWilliams. Biography of Vera Pless. 32. An Introduction to Galois Theory. Fundamental Theorem of Galois Theory. Solvability of Polynomials by. Radicals. Insolvability of a Quintic. Exercises. Biography of Philip Hall. 33. Cyclotomic Extensions. Motivation. Cyclotomic Polynomials. The Constructible Regular n-gons. Exercises. Computer Exercises. Biography of Carl Friedrich Gauss. Biography of Manjul Bhargava. Supplementary Exercises for Chapters 24-33.

Read More Show Less

Customer Reviews

Average Rating 1
( 1 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(1)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted August 31, 2011

    No text was provided for this review.

Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)