Contemporary Linear Algebra / Edition 1

Hardcover (Print)
Buy New
Buy New from
Buy Used
Buy Used from
(Save 37%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $16.04
Usually ships in 1-2 business days
(Save 93%)
Other sellers (Hardcover)
  • All (15) from $16.04   
  • New (8) from $77.69   
  • Used (7) from $15.99   


From one of the premier authors in higher education comes a new linear algebra textbook that fosters mathematical thinking, problem-solving abilities, and exposure to real-world applications. Without sacrificing mathematical precision, Anton and Busby focus on the aspects of linear algebra that are most likely to have practical value to the student while not compromising the intrinsic mathematical form of the subject. Throughout Contemporary Linear Algebra, students are encouraged to look at ideas and problems from multiple points of view.

Read More Show Less

Editorial Reviews

From the Publisher
“Enthusiasts will find the many historical remarks ofinterest.” (Mathematika, No.50, 2005)

"...It deserves to become a popular textbook with instructor andstudent alike". (Zentralblatt MATH, Vol.1008, No.8,2003)

Read More Show Less

Product Details

  • ISBN-13: 9780471163626
  • Publisher: Wiley
  • Publication date: 7/26/2002
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 656
  • Product dimensions: 8.31 (w) x 10.06 (h) x 1.17 (d)

Table of Contents

CHAPTER 1 Vectors 1

1.1 Vectors and Matrices in Engineering and Mathematics; n-Space 1

1.2 Dot Product and Orthogonality 15

1.3 Vector Equations of Lines and Planes 29

CHAPTER 2 Systems of Linear Equations 39

2.1 Introduction to Systems of Linear Equations 39

2.2 Solving Linear Systems by Row Reduction 48

2.3 Applications of Linear Systems 63

CHAPTER 3 Matrices and Matrix Algebra 79

3.1 Operations on Matrices 79

3.2 Inverses; Algebraic Properties of Matrices 94

3.3 Elementary Matrices; A Method for Finding A−1 109

3.4 Subspaces and Linear Independence 123

3.5 The Geometry of Linear Systems 135

3.6 Matrices with Special Forms 143

3.7 Matrix Factorizations; LU-Decomposition 154

3.8 Partitioned Matrices and Parallel Processing 166

CHAPTER 4 Determinants 175

4.1 Determinants; Cofactor Expansion 175

4.2 Properties of Determinants 184

4.3 Cramer’s Rule; Formula for A −1; Applications of Determinants 196

4.4 A First Look at Eigenvalues and Eigenvectors 210

CHAPTER 5 Matrix Models 225

5.1 Dynamical Systems and Markov Chains 225

5.2 Leontief Input-Output Models 235

5.3 Gauss–Seidel and Jacobi Iteration; Sparse Linear Systems 241

5.4 The Power Method; Application to Internet Search Engines 249

CHAPTER 6 Linear Transformations 265

6.1 Matrices as Transformations 265

6.2 Geometry of Linear Operators 280

6.3 Kernel and Range 296

6.4 Composition and Invertibility of Linear Transformations 305

6.5 Computer Graphics 318

CHAPTER 7 Dimension and Structure 329

7.1 Basis and Dimension 329

7.2 Properties of Bases 335

7.3 The Fundamental Spaces of a Matrix 342

7.4 The Dimension Theorem and Its Implications 352

7.5 The Rank Theorem and Its Implications 360

7.6 The Pivot Theorem and Its Implications 370

7.7 The Projection Theorem and Its Implications 379

7.8 Best Approximation and Least Squares 393

7.9 Orthonormal Bases and the Gram–Schmidt Process 406

7.10 QR-Decomposition; Householder Transformations 417

7.11 Coordinates with Respect to a Basis 428

CHAPTER 8 Diagonalization 443

8.1 Matrix Representations of Linear Transformations 443

8.2 Similarity and Diagonalizability 456

8.3 Orthogonal Diagonalizability; Functions of a Matrix 468

8.4 Quadratic Forms 481

8.5 Application of Quadratic Forms to Optimization 495

8.6 Singular Value Decomposition 502

8.7 The Pseudoinverse 518

8.8 Complex Eigenvalues and Eigenvectors 525

8.9 Hermitian, Unitary, and Normal Matrices 535

8.10 Systems of Differential Equations 542

CHAPTER 9 General Vector Spaces 555

9.1 Vector Space Axioms 555

9.2 Inner Product Spaces; Fourier Series 569

9.3 General Linear Transformations; Isomorphism 582

APPENDIX A How to Read Theorems A1

APPENDIX B Complex Numbers A3




Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
  • Anonymous

    Posted March 29, 2012

    No text was provided for this review.

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)