Contrast Data Mining: Concepts, Algorithms, and Applications
A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life ProblemsContrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and
1128484452
Contrast Data Mining: Concepts, Algorithms, and Applications
A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life ProblemsContrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and
69.99 In Stock
Contrast Data Mining: Concepts, Algorithms, and Applications

Contrast Data Mining: Concepts, Algorithms, and Applications

Contrast Data Mining: Concepts, Algorithms, and Applications

Contrast Data Mining: Concepts, Algorithms, and Applications

eBook

$69.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A Fruitful Field for Researching Data Mining Methodology and for Solving Real-Life ProblemsContrast Data Mining: Concepts, Algorithms, and Applications collects recent results from this specialized area of data mining that have previously been scattered in the literature, making them more accessible to researchers and developers in data mining and

Product Details

ISBN-13: 9781040071915
Publisher: CRC Press
Publication date: 04/19/2016
Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Sold by: Barnes & Noble
Format: eBook
Pages: 434
File size: 6 MB

About the Author

Guozhu Dong is a professor at Wright State University. A senior member of the IEEE and ACM, Dr. Dong holds four U.S. patents and has authored over 130 articles on databases, data mining, and bioinformatics; co-authored Sequence Data Mining; and co-edited Contrast Data Mining and Applications. His research focuses on contrast/emerging pattern mining and applications as well as first-order incremental view maintenance. He has a PhD in computer science from the University of Southern California.

James Bailey is an Australian Research Council Future Fellow in the Department of Computing and Information Systems at the University of Melbourne. Dr. Bailey has authored over 100 articles and is an associate editor of IEEE Transactions on Knowledge and Data Engineering and Knowledge and Information Systems: An International Journal. His research focuses on fundamental topics in data mining and machine learning, such as contrast pattern mining and data clustering, as well as application aspects in areas, including health informatics and bioinformatics. He has a PhD in computer science from the University of Melbourne.

Table of Contents

Preliminaries and Statistical Contrast Measures. Contrast Mining Algorithms. Generalized Contrasts, Emerging Data Cubes, and Rough Sets. Contrast Mining for Classification and Clustering. Contrast Mining for Bioinformatics and Chemoinformatics. Contrast Mining for Special Domains. Survey of Other Papers. Bibliography. Index.
From the B&N Reads Blog

Customer Reviews