Control of Complex Systems / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$229.59
Used and New from Other Sellers
Used and New from Other Sellers
from $111.33
Usually ships in 1-2 business days
(Save 58%)
Other sellers (Hardcover)
  • All (6) from $111.33   
  • New (4) from $173.99   
  • Used (2) from $111.31   

Overview

The world of artificial systems is reaching hitherto undreamed-of levels of complexity. Surface traffic, electricity distribution, mobile communications, etc., demonstrate that problems are arising that are beyond classical scientific or engineering knowledge. In order that our ability to control such systems should not be hindered by lack of comprehension, there is an on-going effort to understand them.
This book is an example of the types of approach that European researchers are using to tackle problems derived from systems' complexity. It has grown out of activities in the Control of Complex Systems (COSY) research program the goals of which are to promote multi-disciplinary activity leading to a deeper understanding and further development of control technologies for complex systems and if possible, to develop the theory underlying such systems. The material in this book represents a selection of the results of the COSY program and is organised as a collection of essays of varying nature: surveys of essential areas, discussion of specific problems, case studies, and benchmark problems.
Topics covered include:
Modelling complex physical systems;
Passivity-based control of non-linear systems;
Aspects of fault identification and fault tolerance;
Control design;
Learning control;
Satellite attitude control.
Complex systems appear in many different fields and for this reason this book should be of interest to scientists, researchers and industrial engineers with a broad spectrum of experience.

Read More Show Less

Product Details

  • ISBN-13: 9781852333249
  • Publisher: Springer London
  • Publication date: 11/27/2000
  • Edition description: 2001
  • Edition number: 1
  • Pages: 482
  • Product dimensions: 1.13 (w) x 9.21 (h) x 6.14 (d)

Table of Contents

1. Introduction.- 1.1 Complex Systems and Control.- 1.2 Complex Engineering Systems.- 1.3 The Role of Feedback.- 1.4 Dynamics and Control.- 1.5 The Nature of Failures.- 1.6 Research Challenges.- 1.7 About the Book.- 2. Modeling Complex Physical Systems.- 2.1 Introduction.- 2.2 The Modelica Project.- 2.3 Composition Diagrams.- 2.4 Modelica Details.- 2.5 Non-causal Modeling.- 2.6 Advanced Modeling Features.- 2.7 Standard Libraries.- 2.8 Future Development.- 2.9 Conclusions.- 3. Passivity-based Control of Non-linear Systems.- 3.1 Introduction.- 3.2 Passivity and Stability Analysis of Feedback Interconnections.- 3.3 Feedback Passivity and Stabilization.- 3.4 Euler-Lagrange Systems.- 3.5 Disturbance Attenuation and R oo Control.- 4. An Introduction to Forwarding.- 4.1 Introduction.- 4.2 C1 Dissipative Systems.- 4.3 C1 Dis sipative Systems via Reduction or Extension.- 4.4 Exact Change of Coordinates.- 4.5 Approximate Change of Coordinates.- 5. Iterative Identification and Control Design.- 5.1 Introduction.- 5.2 Youla Parametrization.- 5.3 A Generic Two-degree of Freedom Controller.- 5.4 Optimization of the Generic Scheme.- 5.5 A New Closed-loop System Parametrization.- 5.6 Asymptotic Variances for K-B-Parametrization.- 5.7 Iterative Controller Refinement.- 5.8 Robustness and Sensitivity.- 5.9 Product Inequalities.- 6. Learning Control of Complex Systems.- 6.1 Introduction.- 6.2 Model Structures for Learning.- 6.3 Control Structures for Learning.- 6.4 Learning Paradigms.- 6.5 A General Framework for On-line Learning.- 6.6 Validation.- 6.7 Conclusions.- 7. Software for Complex Controllers.- 7.1 Introduction.- 7.2 An Evolving Paradigm.- 7.3 Emerging Software Concepts.- 7.4 On to Standardization.- 7.5 Sample Complex Software Controllers.- 7.6 The Future of Software for Control.- 8. Fault-tolerant Control Systems.- 8.1 Introduction.- 8.2 Basic Definitions.- 8.3 Analysis of Fault Propagation.- 8.4 Analysis of Structure.- 8.5 Recoverability.- 8.6 Autonomous Fault-tolerant Control.- 8.7 An Example: Ship Propulsio.- 8.8 Summary.- 9. Fault Detection and Isolation.- 9.1 The Principle of Model-based Fault Diagnosis.- 9.2 Signal-based FDI Approach.- 9.3 Quantitative Model-based FDI Approach.- 9.4 Qualitative Model-based FDI Approach.- 9.5 Summary.- 10. Residual Generation for FDI in Non-linear Systems.- 10.1 Introduction.- 10.2 Algebraic Approach.- 10.3 Geometric Approach.- 10.4 Conclusion.- 11. Predictive Methods for FTC.- 11.1 Introduction.- 11.2 Predictive Control.- 11.3 Embedding Fault Tolerance in Predictive Control.- 11.4 Model Adaptation and Management.- 11.5 Modifying Control Objectives.- 11.6 Current Industrial Practice.- 11.7 Conclusions.- 12. Three-tank Control Reconfiguration.- 12.1 The Benchmark Problem.- 12.2 Reconfigurability Analysis.- 12.3 Reconfiguration Based on a Qualitative Model.- 12.4 A Hybrid Approach to Reconfigurable Control.- 12.5 A Multi-model-based Reconfigurable Control.- 12.6 A Neural Observer-based Approach.- 12.7 Conclusions.- 13. Ship Propulsion Control and Reconfiguration.- 13.1 Introduction.- 13.2 Ship Propulsion System.- 13.3 Structural Analysis.- 13.4 Fault Detection: A Fuzzy Observer Approach.- 13.5 Fault Detection: Non-linear Approach - 1.- 13.6 Fault Detection: Non-linear Approach - 2.- 13.7 Reconfiguration Using Software Redundancy.- 13.8 Reconfiguration Using Predictive Control.- 13.9 Summary and Conclusions.- 14. Learning Control of Thermal Systems.- 14.1 Introduction.- 14.2 On Thermal System Learning Control.- 14.3 Controlling Kiln Heat Processing.- 14.4 Controlling Reheat Furnace Processes.- 14.5 Hierarchical Control for Quality Ceramic Tiles.- 14.6 Learning Control ofFBC Combustion.- 14.7 Conclusions and Future Research.- 15. Vibration Control of High-rise Buildings.- 15.1 Introduction.- 15.2 Energy and Information.- 15.3 Analytical Mechanics and HRB Modelling.- 15.4 Disturbance Decoupling.- 15.5 Passivity Based Control.- 15.6 Engineering Constraints and Feedback.- 15.7 Feedback Control and Testing.- 15.8 Conclusions and Future Research.- 16. Control of Helicopters.- 16.1 Introduction.- 16.2 Project History.- 16.3 The COSY Program.- 16.4 Hardware System.- 16.5 Software.- 16.6 Design of the Autopilot.- 16.7 Future Development.- 16.8 Conclusions.- 17. Satellite Attitude Control.- 17.1 Introduction to the Attitude Control Problem.- 17.2 Fault-tolerant Control of the 0RSTED Satellite.- 17.3 Stabilization of the Angular Velocity of a Rigid Body.- 17.4 Optimal Slew Maneuvers via Geometric Control Theory.- 17.5 Attitude Control using Magnetorquers as Sole Actuators.- 17.6 Predictive Attitude Control of Small Satellites.- 17.7 Attitude Determination without Sensor Redundancy.- 17.8 Summary.- Appendix A. List of Contributors.- Appendix B. List of Abbreviations.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)