Table of Contents
Preface xv
Preface to the Third Edition xvii
Preface to the Second Edition xxi
Preface to the First Edition xxiii
List of Symbols xxv
1 Fundamental Principles 1
1.1 Mass Conservation / 2
1.2 Force Balances (Momentum Equations) / 4
1.3 First Law of Thermodynamics / 8
1.4 Second Law of Thermodynamics / 15
1.5 Rules of Scale Analysis / 17
1.6 Heatlines for Visualizing Convection / 21
References / 22
Problems / 25
2 Laminar Boundary Layer Flow 30
2.1 Fundamental Problem in Convective Heat Transfer / 31
2.2 Concept of Boundary Layer / 34
2.3 Scale Analysis / 37
2.4 Integral Solutions / 42
2.5 Similarity Solutions / 48
2.5.1 Method / 48
2.5.2 Flow Solution / 51
2.5.3 Heat Transfer Solution / 53
2.6 Other Wall Heating Conditions / 56
2.6.1 Unheated Starting Length / 57
2.6.2 Arbitrary Wall Temperature / 58
2.6.3 Uniform Heat Flux / 60
2.6.4 Film Temperature / 61
2.7 Longitudinal Pressure Gradient: Flow Past a Wedge and Stagnation Flow / 61
2.8 Flow Through the Wall: Blowing and Suction / 64
2.9 Conduction Across a Solid Coating Deposited on a Wall / 68
2.10 Entropy Generation Minimization in Laminar Boundary Layer Flow / 71
2.11 Heatlines in Laminar Boundary Layer Flow / 74
2.12 Distribution of Heat Sources on a Wall Cooled by Forced Convection / 77
2.13 The Flow of Stresses / 79
References / 80
Problems / 82
3 Laminar Duct Flow 96
3.1 Hydrodynamic Entrance Length / 97
3.2 Fully Developed Flow / 100
3.3 Hydraulic Diameter and Pressure Drop / 103
3.4 Heat Transfer To Fully Developed Duct Flow / 110
3.4.1 Mean Temperature / 110
3.4.2 Fully Developed Temperature Profile / 112
3.4.3 Uniform Wall Heat Flux / 114
3.4.4 Uniform Wall Temperature / 117
3.5 Heat Transfer to Developing Flow / 120
3.5.1 Scale Analysis / 121
3.5.2 Thermally Developing Hagen–Poiseuille Flow / 122
3.5.3 Thermally and Hydraulically Developing Flow / 128
3.6 Stack of Heat-Generating Plates / 129
3.7 Heatlines in Fully Developed Duct Flow / 134
3.8 Duct Shape for Minimum Flow Resistance / 137
3.9 Tree-Shaped Flow / 139
References / 147
Problems / 153
4 External Natural Convection 168
4.1 Natural Convection as a Heat Engine in Motion / 169
4.2 Laminar Boundary Layer Equations / 173
4.3 Scale Analysis / 176
4.3.1 High-Pr Fluids / 177
4.3.2 Low-Pr Fluids / 179
4.3.3 Observations / 180
4.4 Integral Solution / 182
4.4.1 High-Pr Fluids / 183
4.4.2 Low-Pr Fluids / 184
4.5 Similarity Solution / 186
4.6 Uniform Wall Heat Flux / 189
4.7 Effect of Thermal Stratification / 192
4.8 Conjugate Boundary Layers / 195
4.9 Vertical Channel Flow / 197
4.10 Combined Natural and Forced Convection (Mixed Convection) / 200
4.11 Heat Transfer Results Including the Effect of Turbulence / 203
4.11.1 Vertical Walls / 203
4.11.2 Inclined Walls / 205
4.11.3 Horizontal Walls / 207
4.11.4 Horizontal Cylinder / 209
4.11.5 Sphere / 209
4.11.6 Vertical Cylinder / 210
4.11.7 Other Immersed Bodies / 211
4.12 Stack of Vertical Heat-Generating Plates / 213
4.13 Distribution of Heat Sources on a Vertical Wall / 216
References / 218
Problems / 221
5 Internal Natural Convection 233
5.1 Transient Heating from the Side / 233
5.1.1 Scale Analysis / 233
5.1.2 Criterion for Distinct Vertical Layers / 237
5.1.3 Criterion for Distinct Horizontal Jets / 238
5.2 Boundary Layer Regime / 241
5.3 Shallow Enclosure Limit / 248
5.4 Summary of Results for Heating from the Side / 255
5.4.1 Isothermal Sidewalls / 255
5.4.2 Sidewalls with Uniform Heat Flux / 259
5.4.3 Partially Divided Enclosures / 259
5.4.4 Triangular Enclosures / 262
5.5 Enclosures Heated from Below / 262
5.5.1 Heat Transfer Results / 263
5.5.2 Scale Theory of the Turbulent Regime / 265
5.5.3 Constructal Theory of Bènard Convection / 267
5.6 Inclined Enclosures / 274
5.7 Annular Space Between Horizontal Cylinders / 276
5.8 Annular Space Between Concentric Spheres / 278
5.9 Enclosures for Thermal Insulation and Mechanical
Strength / 278
References / 284
Problems / 289
6 Transition to Turbulence 295
6.1 Empirical Transition Data / 295
6.2 Scaling Laws of Transition / 297
6.3 Buckling of Inviscid Streams / 300
6.4 Local Reynolds Number Criterion for Transition / 304
6.5 Instability of Inviscid Flow / 307
6.6 Transition in Natural Convection on a Vertical Wall / 313
References / 315
Problems / 318
7 Turbulent Boundary Layer Flow 320
7.1 Large-Scale Structure / 320
7.2 Time-Averaged Equations / 322
7.3 Boundary Layer Equations / 325
7.4 Mixing Length Model / 328
7.5 Velocity Distribution / 329
7.6 Wall Friction in Boundary Layer Flow / 336
7.7 Heat Transfer in Boundary Layer Flow / 338
7.8 Theory of Heat Transfer in Turbulent Boundary Layer Flow / 342
7.9 Other External Flows / 347
7.9.1 Single Cylinder in Cross Flow / 347
7.9.2 Sphere / 349
7.9.3 Other Body Shapes / 350
7.9.4 Arrays of Cylinders in Cross Flow / 351
7.10 Natural Convection Along Vertical Walls / 356
References / 359
Problems / 361
8 Turbulent Duct Flow 369
8.1 Velocity Distribution / 369
8.2 Friction Factor and Pressure Drop / 371
8.3 Heat Transfer Coefficient / 376
8.4 Total Heat Transfer Rate / 380
8.4.1 Isothermal Wall / 380
8.4.2 Uniform Wall Heating / 382
8.4.3 Time-Dependent Heat Transfer / 382
8.5 More Refined Turbulence Models / 383
8.6 Heatlines in Turbulent Flow Near a Wall / 387
8.7 Channel Spacings for Turbulent Flow / 389
References / 390
Problems / 392
9 Free Turbulent Flows 398
9.1 Free Shear Layers / 398
9.1.1 Free Turbulent Flow Model / 398
9.1.2 Velocity Distribution / 401
9.1.3 Structure of Free Turbulent Flows / 402
9.1.4 Temperature Distribution / 404
9.2 Jets / 405
9.2.1 Two-Dimensional Jets / 406
9.2.2 Round Jets / 409
9.2.3 Jet in Density-Stratified Reservoir / 411
9.3 Plumes / 413
9.3.1 Round Plume and the Entrainment Hypothesis / 413
9.3.2 Pulsating Frequency of Pool Fires / 418
9.3.3 Geometric Similarity of Free Turbulent Flows / 421
9.4 Thermal Wakes Behind Concentrated Sources / 422
References / 425
Problems / 426
10 Convection with Change of Phase 428
10.1 Condensation / 428
10.1.1 Laminar Film on a Vertical Surface / 428
10.1.2 Turbulent Film on a Vertical Surface / 435
10.1.3 Film Condensation in Other Configurations / 438
10.1.4 Drop Condensation / 445
10.2 Boiling / 447
10.2.1 Pool Boiling Regimes / 447
10.2.2 Nucleate Boiling and Peak Heat Flux / 451
10.2.3 Film Boiling and Minimum Heat Flux / 454
10.2.4 Flow Boiling / 457
10.3 Contact Melting and Lubrication / 457
10.3.1 Plane Surfaces with Relative Motion / 458
10.3.2 Other Contact Melting Configurations / 462
10.3.3 Scale Analysis and Correlation / 464
10.3.4 Melting Due to Viscous Heating in the Liquid Film / 466
10.4 Melting By Natural Convection / 469
10.4.1 Transition from the Conduction Regime to the Convection Regime / 469
10.4.2 Quasisteady Convection Regime / 472
10.4.3 Horizontal Spreading of the Melt Layer / 474
References / 478
Problems / 482
11 Mass Transfer 489
11.1 Properties of Mixtures / 489
11.2 Mass Conservation / 492
11.3 Mass Diffusivities / 497
11.4 Boundary Conditions / 499
11.5 Laminar Forced Convection / 501
11.6 Impermeable Surface Model / 504
11.7 Other External Forced Convection Configurations / 506
11.8 Internal Forced Convection / 509
11.9 Natural Convection / 511
11.9.1 Mass-Transfer-Driven Flow / 512
11.9.2 Heat-Transfer-Driven Flow / 513
11.10 Turbulent Flow / 516
11.10.1 Time-Averaged Concentration Equation / 516
11.10.2 Forced Convection Results / 517
11.10.3 Contaminant Removal from a Ventilated Enclosure / 520
11.11 Massfunction and Masslines / 527
11.12 Effect of Chemical Reaction / 527
References / 531
Problems / 532
12 Convection in Porous Media 537
12.1 Mass Conservation / 537
12.2 Darcy Flow Model and the Forchheimer Modification / 540
12.3 First Law of Thermodynamics / 542
12.4 Second Law of Thermodynamics / 546
12.5 Forced Convection / 547
12.5.1 Boundary Layers / 547
12.5.2 Concentrated Heat Sources / 552
12.5.3 Sphere and Cylinder in Cross Flow / 553
12.5.4 Channel Filled with Porous Medium / 554
12.6 Natural Convection Boundary Layers / 555
12.6.1 Boundary Layer Equations: Vertical Wall / 555
12.6.2 Uniform Wall Temperature / 556
12.6.3 Uniform Wall Heat Flux / 558
12.6.4 Spacings for Channels Filled with Porous Structures / 559
12.6.5 Conjugate Boundary Layers / 562
12.6.6 Thermal Stratification / 563
12.6.7 Sphere and Horizontal Cylinder / 566
12.6.8 Horizontal Walls / 567
12.6.9 Concentrated Heat Sources / 567
12.7 Enclosed Porous Media Heated from the Side / 571
12.7.1 Four Heat Transfer Regimes / 571
12.7.2 Convection Results / 575
12.8 Penetrative Convection / 577
12.8.1 Lateral Penetration / 577
12.8.2 Vertical Penetration / 578
12.9 Enclosed Porous Media Heated from Below / 579
12.9.1 Onset of Convection / 579
12.9.2 Darcy Flow / 583
12.9.3 Forchheimer Flow / 585
12.10 Multiple Flow Scales Distributed Nonuniformly / 587
12.10.1 Heat Transfer / 590
12.10.2 Fluid Friction / 591
12.10.3 Heat Transfer Rate Density: The Smallest Scale for Convection / 591
12.11 Natural Porous Media: Alternating Trees / 592
References / 595
Problems / 598
Appendixes 607
A Constants and Conversion Factors / 609
B Properties of Solids / 615
C Properties of Liquids / 625
D Properties of Gases / 633
E Mathematical Formulas / 639
Author Index 641
Subject Index 653