Convex Functions: Constructions, Characterizations and Counterexamples
Like differentiability, convexity is a natural and powerful property of functions that plays a significant role in many areas of mathematics, both pure and applied. It ties together notions from topology, algebra, geometry and analysis, and is an important tool in optimization, mathematical programming and game theory. This book, which is the product of a collaboration of over 15 years, is unique in that it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics and applications, treating convex functions in both Euclidean and Banach spaces. The book can either be read sequentially for a graduate course, or dipped into by researchers and practitioners. Each chapter contains a variety of specific examples, and over 600 exercises are included, ranging in difficulty from early graduate to research level.
1100957855
Convex Functions: Constructions, Characterizations and Counterexamples
Like differentiability, convexity is a natural and powerful property of functions that plays a significant role in many areas of mathematics, both pure and applied. It ties together notions from topology, algebra, geometry and analysis, and is an important tool in optimization, mathematical programming and game theory. This book, which is the product of a collaboration of over 15 years, is unique in that it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics and applications, treating convex functions in both Euclidean and Banach spaces. The book can either be read sequentially for a graduate course, or dipped into by researchers and practitioners. Each chapter contains a variety of specific examples, and over 600 exercises are included, ranging in difficulty from early graduate to research level.
191.0 In Stock
Convex Functions: Constructions, Characterizations and Counterexamples

Convex Functions: Constructions, Characterizations and Counterexamples

Convex Functions: Constructions, Characterizations and Counterexamples

Convex Functions: Constructions, Characterizations and Counterexamples

eBook

$191.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Like differentiability, convexity is a natural and powerful property of functions that plays a significant role in many areas of mathematics, both pure and applied. It ties together notions from topology, algebra, geometry and analysis, and is an important tool in optimization, mathematical programming and game theory. This book, which is the product of a collaboration of over 15 years, is unique in that it focuses on convex functions themselves, rather than on convex analysis. The authors explore the various classes and their characteristics and applications, treating convex functions in both Euclidean and Banach spaces. The book can either be read sequentially for a graduate course, or dipped into by researchers and practitioners. Each chapter contains a variety of specific examples, and over 600 exercises are included, ranging in difficulty from early graduate to research level.

Product Details

ISBN-13: 9781139637282
Publisher: Cambridge University Press
Publication date: 01/14/2010
Series: Encyclopedia of Mathematics and its Applications , #109
Sold by: Barnes & Noble
Format: eBook
File size: 32 MB
Note: This product may take a few minutes to download.

About the Author

Jonathan M. Borwein is Canada Research Chair in Distributed and Collaborative Research at Dalhousie University, Nova Scotia. He is presently Visiting Professor Laureate at the University of Newcastle, New South Wales.
Jon D. Vanderwerff is a Professor of Mathematics at La Sierra University, California.

Table of Contents

Preface; 1. Why convex?; 2. Convex functions on Euclidean spaces; 3. Finer structure of Euclidean spaces; 4. Convex functions on Banach spaces; 5. Duality between smoothness and strict convexity; 6. Further analytic topics; 7. Barriers and Legendre functions; 8. Convex functions and classifications of Banach spaces; 9. Monotone operators and the Fitzpatrick function; 10. Further remarks and notes; References; Index.
From the B&N Reads Blog

Customer Reviews