Cool Math for Hot Music: A First Introduction to Mathematics for Music Theorists
This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions.

1133113793
Cool Math for Hot Music: A First Introduction to Mathematics for Music Theorists
This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions.

69.99 In Stock
Cool Math for Hot Music: A First Introduction to Mathematics for Music Theorists

Cool Math for Hot Music: A First Introduction to Mathematics for Music Theorists

Cool Math for Hot Music: A First Introduction to Mathematics for Music Theorists

Cool Math for Hot Music: A First Introduction to Mathematics for Music Theorists

Paperback(Softcover reprint of the original 1st ed. 2016)

$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This textbook is a first introduction to mathematics for music theorists, covering basic topics such as sets and functions, universal properties, numbers and recursion, graphs, groups, rings, matrices and modules, continuity, calculus, and gestures. It approaches these abstract themes in a new way: Every concept or theorem is motivated and illustrated by examples from music theory (such as harmony, counterpoint, tuning), composition (e.g., classical combinatorics, dodecaphonic composition), and gestural performance. The book includes many illustrations, and exercises with solutions.


Product Details

ISBN-13: 9783319826981
Publisher: Springer International Publishing
Publication date: 04/25/2018
Series: Computational Music Science
Edition description: Softcover reprint of the original 1st ed. 2016
Pages: 323
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Prof. Dr. Guerino Mazzola earned his Ph.D. in Mathematics from Zurich University. He wrote the groundbreaking book The Topos of Music in 2002, its formal language and models are used by leading researchers in Europe, India, Japan, and North America and have become a foundation of music software design. Prof. Mazzola has an appointment as professor in the School of Music at the College of Liberal Arts, University of Minnesota.

Maria Caterina Mannone is completing her Ph.D. in the School of Music of the University of Minnesota.

Yan Pang Clark is completing her Ph.D. in the School of Music of the University of Minnesota.

Table of Contents

Part I: Introduction and Short History.- The ‘Counterpoint’ of Mathematics and Music.- Short History of the Relationship Between Mathematics and Music.- Part II: Sets and Functions.- The Architecture of Sets.- Functions and Relations.- Universal Properties.- Part III: Numbers.- Natural Numbers.- Recursion.- Natural Arithmetic.- Euclid and Normal Forms.- Integers.- Rationals.- Real Numbers.- Roots, Logarithms, and Normal Forms.- Complex Numbers.- Part IV: Graphs and Nerves.- Directed and Undirected Graphs.- Nerves.- Part V: Monoids and Groups.- Monoids.- Groups.- Group Actions, Subgroups, Quotients, and Products.- Permutation Groups.- The Third Torus and Counterpoint.- Coltrane’s Giant Steps.- Modulation Theory.- Part VI: Rings and Modules.- Rings and Fields.- Primes.- Matrices.- Modules.- Just Tuning.- Categories.- Part VII: Continuity and Calculus.- Continuity.- Differentiability.- Performance.- Gestures.- Part VIII: Solutions, References, Index.- Solutions of Exercises.- References.- Index.

From the B&N Reads Blog

Customer Reviews