Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $94.77
Usually ships in 1-2 business days
(Save 24%)
Other sellers (Hardcover)
  • All (5) from $94.77   
  • New (4) from $94.77   
  • Used (1) from $119.99   


While the weight of a structure constitutes a significant part of the cost, a minimum weight design is not necessarily the minimum cost design. Little attention in structural optimization has been paid to the cost optimization problem, particularly of realistic three-dimensional structures. Cost optimization is becoming a priority in all civil engineering projects, and the concept of Life-Cycle Costing is penetrating design, manufacturing and construction organizations.

In this groundbreaking book the authors present novel computational models for cost optimization of large scale, realistic structures, subjected to the actual constraints of commonly used design codes.

As the first book on the subject this book:

  • Contains detailed step-by-step algorithms
  • Focuses on novel computing techniques such as genetic algorithms, fuzzy logic, and parallel computing
  • Covers both Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD) codes
  • Includes realistic design examples covering large-scale, high-rise building structures
  • Presents computational models that enable substantial cost savings in the design of structures

Fully automated structural design and cost optimization is where large-scale design technology is heading, thus Cost Optimization of Structures: Fuzzy Logic, Genetic Algorithms, and Parallel Computing will be of great interest to civil and structural engineers, mechanical engineers, structural design software developers, and architectural engineers involved in the design of structures and life-cycle cost optimisation. It is also a pioneering text for graduate students and researchers working in building design and structural optimization.

Read More Show Less

Product Details

  • ISBN-13: 9780470867334
  • Publisher: Wiley
  • Publication date: 10/23/2006
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 222
  • Product dimensions: 6.30 (w) x 9.17 (h) x 0.69 (d)

Meet the Author

Hojjat Adeli is Professor of Civil and EnvironmentalEngineering and Geodetic Science and Lichtenstein Professor inInfrastructure Engineering at The Ohio State University. Acontributor to 70 different scholarly journals, he has authoredover 400 research and scientific publications in diverse areas ofengineering, computer science, and applied mathematics since hereceived his PhD from Stanford University in 1976 at the age of 26.He has authored/co-authored eleven pioneering books such asMachine Learning – Neural Networks, GeneticAlgorithms, and Fuzzy Systems, John Wiley & Sons, Ltd,1995; Neurocomputing for Design Automation, CRC Press, 1998;Distributed Computer-Aided Engineering, CRC Press, 1999;High-Performance Computing in Structural Engineering, CRCPress, 1999; Control, Optimization, and Smart Structures –High-Performance Bridges and Buildings of the Future,John Wiley & Sons, Ltd, 1999; ConstructionScheduling, Cost Optimization, and Management – A NewModel Based on Neurocomputing and Object Technologies,Spon Press, 2001; and Wavelets in IntelligentTransportation Systems, John Wiley & Sons, Ltd, 2005. Hehas also edited 12 books including Intelligent InformationSystems, IEEE Computer Society, 1997. He is the Editor-in-Chiefof two research journals, Computer-Aided Civil andInfrastructure Engineering, which he founded in 1986, andIntegrated Computer-Aided Engineering, which hefounded in 1993. He has been a Keynote/Plenary Lecturer at 56international conferences held in 33 different countries and hasserved on the advisory/editorial/organizing board of 262 nationaland international conferences held in 55 different countries. OnSeptember 29, 1998, he was awarded a patent for a ‘Method andapparatus for efficient design automation and optimization, andstructures produced thereby’ (United States Patent Number(5,815,394) (with a former PhD student). He is the recipient ofnumerous academic, research, and leadership awards, honors, andrecognition. In 1998, he was awarded the University DistinguishedScholar Award by The Ohio State University ‘in recognition ofextraordinary accomplishment in research and scholarship’ andthe Senate of the General Assembly of the State of Ohio passed aresolution honoring him as an ‘Outstanding Ohioan’. Heis the quadruple winner of The Ohio State University College ofEngineering Lumley Outstanding Research Award. In 2005 he waselected an Honorary Member of the American Society of CivilEngineers ‘for wide-ranging, exceptional, and pioneeringcontributions to computing in many civil engineering disciplinesand extraordinary leadership in advancing the use of computing andinformation technologies in civil engineering throughout theworld’. In 2006 he was awarded The American Society of CivilEngineers’ Construction Management Award ‘fordevelopment of ingenious computational and mathematical models inthe areas of construction scheduling, resource scheduling, and costestimation’. His research has been sponsored by 20 differentorganizations including government funding agencies such as theNational Science Foundation, US Air Force Flight DynamicsLaboratory, and US Army Construction Engineering ResearchLaboratory, Federal Highway Administration, state funding agenciessuch as the Ohio Department of Transportation, Ohio Department ofDevelopment, and the State of Ohio Research Challenge Program,professional societies such as the American Iron and SteelInstitute and the American Institute of Steel Construction, andcorporations such as Cray Research Inc., US Steel, and BethlehemSteel Corporation.

Kamal C. Sarma is a Senior Bridge Engineer at Barr &Prevost in Columbus, Ohio. He is a registered Professional Engineerin the state of Ohio. He has more than 25 years of work experiencein Civil and Structural Engineering and has designed numerousmulti-span highway bridges in the state of Ohio. He obtained hisBachelor of Engineering degree in 1976 from Jorhat EngineeringCollege in India and obtained his Master of Structural Engineeringdegree from University of Roorkee, India in 1984. He received hisPhD in Civil Engineering from The Ohio State University in 2001. Heworked as a Lecturer and an Assistant Professor in AssamEngineering College for 12 years where he taught courses on designof reinforced concrete and steel structures. As an expertconsultant, the Government of Assam selected him as a member of athree-member committee assigned to investigate the development ofcracks in the foundation of a thermal power station in Chandrapur,Assam, India. In the United States he also worked as a SeniorSoftware Development Engineer for Qwest Communications and a FieldEngineer for K&S Engineers in Highland, Indiana. He performedconstruction inspection of several multi-storied structures in theChicago area. He has also consulted in the areas of geotechnicaland foundation engineering including slurry wall construction. Heis the co-author of 10 research articles in the areas of structuraloptimization, genetic algorithms, fuzzy systems, andhigh-performance computing including parallel processing, publishedin several international research journals.

Read More Show Less

Table of Contents



About the Authors.


1.1 The Case for Cost Optimization.

1.2 Cost Optimization of Concrete Structures.

1.3 Cost Optimization of Steel Structures.

2 Evolutionary Computing and Genetic Algorithm.

2.1 Overview and Basic Operations.

2.2 Coding and Decoding.

2.3 Basic Operations in Genetic Algorithm.

2.4 GA with Penalty Function Method.

2.5 Augmented LaGrange Method.

2.6 GA with Augmented Lagrangian Method.

3 Cost Optimization of Composite Floors.

3.1 Introduction.

3.2 Minimum Cost Design of Composite Beams.

3.3 Solution by Floating-Point Genetic Algorithm.

3.4 Solution by Neural Dynamics Method.

3.5 Counter Propagation Neural (CPN) Network.

For Function Approximation.


4 Fuzzy Genetic Algorithm for Optimization of SteelStructures.

4.1 Introduction.

4.2 Fuzzy Set Theory and Structural Optimization.

4.3 Minimum Weight Design of Axially Loaded SpaceStructures.

4.4 Fuzzy Membership Functions.

4.5 Fuzzy Augmented Lagrangian Genetic Algorithm.

4.6 Implementation and Examples.

4.7 Conclusion.

5 Fuzzy Discrete Multi-criteria Cost Optimization of SteelStructures.

5.1 Cost of a Steel Structure.

5.2 Cost of a Steel Structure and the Primary ContributingFactors.

5.3 Fuzzy Discrete Multi-criteria Cost Optimization.

5.4 Membership Functions.

5.5 Fuzzy Membership Functions for Criteria with UnequalImportance.

5.6 Pareto Optimality.

5.7 Selection of Commercially Available Discrete Shapes.

5.8 Implementation and Parametric Study.

5.9 Application to High-rise Steel Structures.

5.10 Concluding Comments.

6 Parallel Computing.

6.1 Multiprocessor Computing Environment.

6.2 Parallel Processing Implementation Environment.

6.3 Performance Optimization of Parallel Programs.

7 Parallel Fuzzy Genetic Algorithm for Cost Optimization ofLarge Steel Structures.

7.1 Genetic Algorithm and Parallel Processing.

7.2 Cost Optimization of Moment-Resisting Steel SpaceStructures.

7.3 Data Parallel Fuzzy Genetic Algorithm for Optimization ofSteel Structures Using OpenMP.

7.4 Distributed Parallel Fuzzy Genetic Algorithm forOptimization of Steel Structures Using MPI.

7.5 Bi-level Parallel Fuzzy GA for Optimization of SteelStructures Using OpenMP and MPI.

7.6 Application to High-rise Building Steel Structures.

7.7 Parallel Processing Performance Evaluation.

7.8 Concluding Comments.

8. Life Cycle Cost Optimization of Steel Structures.

8.1 Introduction.

8.2 Life Cycle Cost of a Steel Structure and the PrimaryContributing Factors.

8.3 Formulation of Total Life Cycle Cost.

8.4 Fuzzy Discrete Multi-criteria Life Cycle CostOptimization.

8.5 Application to a High-rise Building Steel Structure.

Appendix A.

Cross-sectional areas, perimeter, and costs in US dollars fordifferent W-shapes used for axially loaded members.

Appendix B.

Cross-sectional areas, perimeter, and costs in US dollars fordifferent W-shapes used for laterally loaded members.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)