A Course in Homological Algebra / Edition 2
  • A Course in Homological Algebra / Edition 2
  • A Course in Homological Algebra / Edition 2

A Course in Homological Algebra / Edition 2

by Peter J. Hilton, Urs Stammbach
     
 

ISBN-10: 0387948236

ISBN-13: 9780387948232

Pub. Date: 01/17/1997

Publisher: Springer New York

Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and

…  See more details below

Overview

Homological algebra has found a large number of applications in many fields ranging from finite and infinite group theory to representation theory, number theory, algebraic topology and sheaf theory. In the new edition of this broad introduction to the field, the authors address a number of select topics and describe their applications, illustrating the range and depth of their developments. A comprehensive set of exercises is included.

Product Details

ISBN-13:
9780387948232
Publisher:
Springer New York
Publication date:
01/17/1997
Series:
Graduate Texts in Mathematics Series, #4
Edition description:
2nd ed. 1997
Pages:
366
Sales rank:
1,050,779
Product dimensions:
6.10(w) x 9.25(h) x 0.04(d)

Related Subjects

Table of Contents

I. Modules.- 1. Modules.- 2. The Group of Homomorphisms.- 3. Sums and Products.- 4. Free and Projective Modules.- 5. Projective Modules over a Principal Ideal Domain.- 6. Dualization, Injective Modules.- 7 Injective Modules over a Principal Ideal Domain.- 8. Cofree Modules.- 9. Essential Extensions.- II. Categories and Functors.- 1. Categories.- 2. Functors.- 3. Duality.- 4. Natural Transformations.- 5. Products and Coproducts; Universal Constructions.- 6. Universal Constructions (Continued); Pull-backs and Push-outs.- 7. Adjoint Functors.- 8. Adjoint Functors and Universal Constructions.- 9. Abelian Categories.- 10. Projective, Injective, and Free Objects.- III. Extensions of Modules.- 1. Extensions.- 2. The Functor Ext.- 3. Ext Using Injectives.- 4. Computation of some Ext-Groups.- 5. Two Exact Sequences.- 6. A Theorem of Stein-Serre for Abelian Groups.- 7. The Tensor Product.- 8. The Functor Tor.- IV. Derived Functors.- 1. Complexes.- 2. The Long Exact (Co) Homology Sequence.- 3. Homotopy.- 4. Resolutions.- 5. Derived Functors.- 6. The Two Long Exact Sequences of Derived Functors.- 7. The Functors Extn? Using Projectives.- 8. The Functors % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbWexLMBb50ujbqegm0B % 1jxALjharqqr1ngBPrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY- % Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq % 0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaae % aaeaaakeaadaqdaaqaaGqaaiaa-veacaWF4bGaa8hDaaaadaqhaaWc % baacciGae43MdWeabaGaamOBaaaaaaa!40A3! $$ \overline {Ext} _\Lambda subn $$ Using Injectives.- 9. Extn and n-Extensions.- 10. Another Characterization of Derived Functors.- 11. The Functor Torn?.- 12. Change of Rings.- V. The Kiinneth Formula.- 1. Double Complexes.- 2. The Künneth Theorem.- 3. The Dual Künneth Theorem.- 4. Applications of the Künneth Formulas.- VI. Cohomology of Groups.- 1. The Group Ring.- 2. Definition of (Co) Homology.- 3. H0, H0.- 4. H1, H1 with Trivial Coefficient Modules.- 5. The Augmentation Ideal, Derivations, and the Semi-Direct Product.- 6. A Short Exact Sequence.- 7. The (Co) Homology of Finite Cyclic Groups.- 8. The 5-Term Exact Sequences.- 9. H2, Hopf’s Formula, and the Lower Central Series.- 10. H2 and Extensions.- 11. Relative Projectives and Relative Injectives.- 12. Reduction Theorems.- 13. Resolutions.- 14. The (Co) Homology of a Coproduct.- 15. The Universal Coefficient Theorem and the (Co)Homology of a Product.- 16. Groups and Subgroups.- VII. Cohomology of Lie Algebras.- 1. Lie Algebras and their Universal Enveloping Algebra.- 2. Definition of Cohomology; H0, H1.- 3. H2 and Extensions.- 4. A Resolution of the Ground Field K.- 5. Semi-simple Lie Algebras.- 6. The two Whitehead Lemmas.- 7. Appendix : Hubert’s Chain-of-Syzygies Theorem.- VIII. Exact Couples and Spectral Sequences.- 1. Exact Couples and Spectral Sequences.- 2. Filtered Differential Objects.- 3. Finite Convergence Conditions for Filtered Chain Complexes.- 4. The Ladder of an Exact Couple.- 5. Limits.- 6. Rees Systems and Filtered Complexes.- 7. The Limit of a Rees System.- 8. Completions of Filtrations.- 9. The Grothendieck Spectral Sequence.- IX. Satellites and Homology.- 1. Projective Classes of Epimorphisms.- 2.—-Derived Functors.- 3.—-Satellites.- 4. The Adjoint Theorem and Examples.- 5. Kan Extensions and Homology.- 6. Applications: Homology of Small Categories, Spectral Sequences.- X. Some Applications and Recent Developments.- 1. Homological Algebra and Algebraic Topology.- 2. Nilpotent Groups.- 3. Finiteness Conditions on Groups.- 4. Modular Representation Theory.- 5. Stable and Derived Categories.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >