Crystal Plasticity Finite Element Methods: in Materials Science and Engineering

Crystal Plasticity Finite Element Methods: in Materials Science and Engineering

by Franz Roters, Philip Eisenlohr, Thomas R. Bieler, Dierk Raabe
     
 

View All Available Formats & Editions

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load.

Overview

Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load.
With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Editorial Reviews

From the Publisher
"Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems under mechanical loads". (Small Business VoIP, 29 November 2010)

Product Details

ISBN-13:
9783527642090
Publisher:
Wiley
Publication date:
08/04/2011
Sold by:
Barnes & Noble
Format:
NOOK Book
Pages:
208
File size:
20 MB
Note:
This product may take a few minutes to download.

Meet the Author

Franz Roters heads the research group "Theory and Simulation" at the Max Planck Institute for Iron Research in Düsseldorf, Germany. After he completed his PhD in physics at the RWTH Aachen University, Germany, he worked for the VAW Aluminium AG in Bonn. Franz Roters serves as head of the technical committee for computer simulation of the German Society for Materials Research (DGM) and as a lecturer at the RWTH.

Philip Eisenlohr is project leader of the Joint Max-Planck-Fraunhofer Initiative on Computational Mechanics of Polycrystals (CMCn) at the Max Planck Institute for Iron Research. He earned his PhD at the University of Erlangen-Nürnberg elucidating the role of dislocation dipoles in the deformation of crystals. For his outstanding diploma degree he received the 2001 Young Scientist Award of the DGM.

Thomas R. Bieler is Professor of Materials Science in the College of Engineering at Michigan State University, USA. He received his PhD in Materials Science in 1989 from the University of California, Davis, before he became Assistant Professor at Michigan State University. He
has taken sabbaticals at the Air Force Research Laboratory (Dayton OH) in the Materials and Manufacturing Directorate in 1999, and at the Max Planck Institute for Iron Research in 2006, where he has focused on deformation characteristics of titanium and titanium alloys.

Dierk Raabe is Chief Executive of the Max Planck Institute for Iron Research and Professor at RWTH Aachen University. After his PhD in Metal Physics and Physical Metallurgy at RWTH Aachen he was visiting scientist in the Department of Materials Science and Engineering at the Carnegie Mellon University in Pittsburgh, USA, and at the National High Magnetic Field Laboratory in Tallahassee, USA. For his outstanding accomplishments he was honored with numerous awards, including the highest German science award, namely the Gottfried Wilhelm Leibniz Award, and the Lee Hsun Lecture Award of the Chinese Academy of Sciences.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >