Data Mining and Knowledge Discovery via Logic-Based Methods: Theory, Algorithms, and Applications / Edition 1

Data Mining and Knowledge Discovery via Logic-Based Methods: Theory, Algorithms, and Applications / Edition 1

by Evangelos Triantaphyllou
     
 

ISBN-10: 1441916296

ISBN-13: 9781441916297

Pub. Date: 06/17/2010

Publisher: Springer US

The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very

Overview

The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.

Product Details

ISBN-13:
9781441916297
Publisher:
Springer US
Publication date:
06/17/2010
Series:
Springer Optimization and Its Applications Series, #43
Edition description:
2010
Pages:
350
Product dimensions:
6.30(w) x 9.30(h) x 1.00(d)

Table of Contents

Algorithmic Issues.- Inferring a Boolean Function from Positive and Negative Examples.- A Revised Branch-and-Bound Approach for Inferring a Boolean Function from Examples.- Some Fast Heuristics for Inferring a Boolean Function from Examples.- An Approach to Guided Learning of Boolean Functions.- An Incremental Learning Algorithm for Inferring Boolean Functions.- A Duality Relationship Between Boolean Functions in CNF and DNF Derivable from the Same Training Examples.- The Rejectability Graph of Two Sets of Examples.- Application Issues.- The Reliability Issue in Data Mining: The Case of Computer-Aided Breast Cancer Diagnosis.- Data Mining and Knowledge Discovery by Means of Monotone Boolean Functions.- Some Application Issues of Monotone Boolean Functions.- Mining of Association Rules.- Data Mining of Text Documents.- First Case Study: Predicting Muscle Fatigue from EMG Signals.- Second Case Study: Inference of Diagnostic Rules for Breast Cancer.- A Fuzzy Logic Approach to Attribute Formalization: Analysis of Lobulation for Breast Cancer Diagnosis.- Conclusions.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >