Data Mining: Practical Machine Learning Tools and Techniques
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.

Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.

The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.

1126350329
Data Mining: Practical Machine Learning Tools and Techniques
Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.

Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.

The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.

54.99 In Stock
Data Mining: Practical Machine Learning Tools and Techniques

Data Mining: Practical Machine Learning Tools and Techniques

Data Mining: Practical Machine Learning Tools and Techniques

Data Mining: Practical Machine Learning Tools and Techniques

eBook

$54.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.

Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research.

The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise.


Product Details

ISBN-13: 9780128043578
Publisher: Morgan Kaufmann Publishers
Publication date: 10/01/2016
Sold by: Barnes & Noble
Format: eBook
Pages: 654
File size: 17 MB
Note: This product may take a few minutes to download.

About the Author

Ian H. Witten is a professor of computer science at the University of Waikato in New Zealand. He directs the New Zealand Digital Library research project. His research interests include information retrieval, machine learning, text compression, and programming by demonstration. He received an MA in Mathematics from Cambridge University, England; an MSc in Computer Science from the University of Calgary, Canada; and a PhD in Electrical Engineering from Essex University, England. He is a fellow of the ACM and of the Royal Society of New Zealand. He has published widely on digital libraries, machine learning, text compression, hypertext, speech synthesis and signal processing, and computer typography.

Eibe Frank lives in New Zealand with his Samoan spouse and two lovely boys, but originally hails from Germany, where he received his first degree in computer science from the University of Karlsruhe. He moved to New Zealand to pursue his Ph.D. in machine learning under the supervision of Ian H. Witten and joined the Department of Computer Science at the University of Waikato as a lecturer on completion of his studies. He is now a professor at the same institution. As an early adopter of the Java programming language, he laid the groundwork for the Weka software described in this book. He has contributed a number of publications on machine learning and data mining to the literature and has refereed for many conferences and journals in these areas.

Mark A. Hall holds a bachelor’s degree in computing and mathematical sciences and a Ph.D. in computer science, both from the University of Waikato. Throughout his time at Waikato, as a student and lecturer in computer science and more recently as a software developer and data mining consultant for Pentaho, an open-source business intelligence software company, Mark has been a core contributor to the Weka software described in this book. He has published several articles on machine learning and data mining and has refereed for conferences and journals in these areas.

Christopher J. Pal is a Canada CIFAR AI Chair and a full professor at the Department of Computer Engineering and Software Engineering at Polytechnique Montréal. Pal’s research interests include computer vision and pattern recognition, computational photography, natural language processing, statistical machine learning and applications to human computer interaction.

Dr. James (Jimmy) Foulds is an associate professor in the Department of Information Systems at the University of Maryland, Baltimore County. Previously, he was a postdoctoral scholar at the University of California, San Diego under the Data Science Postdoctoral Fellowship program, co-sponsored by ITA, Calit2, the Qualcomm Institute, CSE and ECE. Prior to that he was a postdoctoral scholar in Lise Getoor's LINQS research group at UCSC, and he graduated from Padhraic Smyth's DataLab group at UCI. Dr. Foulds' research interests are broadly in socially conscious machine learning and artificial intelligence. His work aims to improve AI’s role in society regarding fairness and privacy, and to promote the practice of computational social science, using probabilistic models and Bayesian inference.

Table of Contents

Part I: Introduction to data mining
1. What’s it all about?
2. Input: Concepts, instances, attributes
3. Output: Knowledge representation
4. Algorithms: The basic methods
5. Credibility: Evaluating what’s been learned

Part II. More advanced machine learning schemes
6. Trees and rules
7. Extending instance-based and linear models
8. Data transformations
9. Probabilistic methods
10. Deep learning
11. Beyond supervised and unsupervised learning
12. Ensemble learning
13. Moving on: applications and beyond

What People are Saying About This

From the Publisher

If you have data you want to analyze and understand, this book and the associated WEKA Toolkit will get you the results you seek!

From the B&N Reads Blog

Customer Reviews