Data Mining Methods and Models / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $88.17
Usually ships in 1-2 business days
(Save 36%)
Other sellers (Hardcover)
  • All (9) from $88.17   
  • New (7) from $88.17   
  • Used (2) from $109.95   


Apply powerful Data Mining Methods and Models to Leverage your Data for Actionable Results Data Mining Methods and Models provides:
• The latest techniques for uncovering hidden nuggets of information
• The insight into how the data mining algorithms actually work
• The hands-on experience of performing data mining on large data sets Data Mining Methods and Models:
• Applies a "white box" methodology, emphasizing an understanding of the model structures underlying the softwareWalks the reader through the various algorithms and provides examples of the operation of the algorithms on actual large data sets, including a detailed case study, "Modeling Response to Direct-Mail Marketing"
• Tests the reader's level of understanding of the concepts and methodologies, with over 110 chapter exercises
• Demonstrates the Clementine data mining software suite, WEKA open source data mining software, SPSS statistical software, and Minitab statistical software
• Includes a companion Web site,, where the data sets used in the book may be downloaded, along with a comprehensive set of data mining resources. Faculty adopters of the book have access to an array of helpful resources, including solutions to all exercises, a PowerPoint(r) presentation of each chapter, sample data mining course projects and accompanying data sets, and multiple-choice chapter quizzes. With its emphasis on learning by doing, this is an excellent textbook for students in business, computer science, and statistics, as well as a problem-solving reference for data analysts and professionals in the field. An Instructor's Manual presenting detailed solutions to all the problems in the book is available onlne.

Read More Show Less

Editorial Reviews

From the Publisher
"..the book is interesting to read, and the methods will be useful for data mining researchers…" (Computing, August 17, 2007)

"…an excellent problem-solving resource..." (CHOICE, June 2007)

"…the latest techniques…insight into how data mining algorithms work…" (Materials World, April 2007)

From the Publisher
"..the book is interesting to read, and the methods will be useful for data mining researchers…" (Computing, August 17, 2007)

"…an excellent problem-solving resource..." (CHOICE, June 2007)

"…the latest techniques…insight into how data mining algorithms work…" (Materials World, April 2007)

Read More Show Less

Product Details

  • ISBN-13: 9780471666561
  • Publisher: Wiley
  • Publication date: 1/30/2006
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 344
  • Product dimensions: 6.48 (w) x 9.57 (h) x 0.88 (d)

Meet the Author

DANIEL T. LAROSE, PhD, received his PhD in statistics from the University of Connecticut. An associate professor of statistics at Central Connecticut State University, he developed and directs Data Mining@CCSU, the world's first online master of science program in data mining. He has also worked as a data mining consultant for Connecticut-area companies. He is the author of Discovering Knowledge in Data: An Introduction to Data Mining (Wiley), and is currently working on the third book of his three-volume set on data mining: Data Mining the Web: Uncovering Patterns in Web Content, Structure, and Usage (with Zdravko Markov, PhD), scheduled to be published by Wiley in 2006.
Read More Show Less

Table of Contents


1. Dimension Reduction Methods.

Need for Dimension Reduction in Data Mining.

Principal Components Analysis.

Factor Analysis.

User-Defined Composites.

2. Regression Modeling.

Example of Simple Linear Regression.

Least-Squares Estimates.

Coefficient or Determination.

Correlation Coefficient.

The ANOVA Table.

Outliers, High Leverage Points, and Influential Observations.

The Regression Model.

Inference in Regression.

Verifying the Regression Assumptions.

An Example: The Baseball Data Set.

An Example: The California Data Set.

Transformations to Achieve Linearity.

3. Multiple Regression and Model Building.

An Example of Multiple Regression.

The Multiple Regression Model.

Inference in Multiple Regression.

Regression with Categorical Predictors.


Variable Selection Methods.

An Application of Variable Selection Methods.

Mallows’ C p Statistic.

Variable Selection Criteria.

Using the Principal Components as Predictors in Multiple Regression.

4. Logistic Regression.

A Simple Example of Logistic Regression.

Maximum Likelihood Estimation.

Interpreting Logistic Regression Output.

Inference: Are the Predictors Significant?

Interpreting the Logistic Regression Model.

Interpreting a Logistic Regression Model for a Dichotomous Predictor.

Interpreting a Logistic Regression Model for a Polychotomous Predictor.

Interpreting a Logistic Regression Model for a Continuous Predictor.

The Assumption of Linearity.

The Zero-Cell Problem.

Multiple Logistic Regression.

Introducing Higher Order terms to Handle Non-Linearity.

Validating the Logistic Regression Model.

WEKA: Hands-On Analysis Using Logistic Regression.

5. Naïve Bayes and Bayesian Networks.

The Bayesian Approach.

The Maximum a Posteriori (MAP) Classification.

The Posterior Odds Ratio.

Balancing the Data.

Naïve Bayes Classification.

Numeric Predictors for Naïve Bayes Classification.

WEKA: Hands-On Analysis Using Naïve Bayes.

Bayesian Belief Networks.

Using the Bayesian Network to Find Probabilities.

WEKA: Hands-On Analysis Using Bayes Net.

6. Genetic Algorithms.

Introduction to Genetic Algorithms.

The Basic Framework of a Genetic Algorithm.

A Simple Example of Genetic Algorithms at Work.

Modifications and Enhancements: Selection.

Modifications and enhancements: Crossover.

Genetic Algorithms for Real-Valued Variables.

Using Genetic Algorithms to Train a Neural Network.

WEKA: Hands-On Analysis Using Genetic Algorithms.

7. Case Study: Modeling Response to Direct-Mail Marketing.

The Cross-Industry Standard Process for Data Mining: CRISP-DM.

Business Understanding Phase.

Data Understanding and Data Preparation Phases.

The Modeling Phase and the Evaluation Phase.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)