Data Privacy in der Praxis: Datenschutz in Data-Science-Projekten verbessern
Bewährte Praktiken zur Verbesserung von Privacy für Daten aus technischer, organisatorischer und rechtlicher Sicht
  • Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind
  • Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend
  • Umfasst auch Themen wie ChatGPT und Deep Fakes
  • Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies

Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen.

Das Buch beantwortet diese wichtigen Fragen:

  • Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science- Anwendungen aus?
  • Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren?
  • Wie funktionieren Federated Learning und Federated Analysis?
  • Homomorphe Verschlüsselung klingt großartig – doch ist sie auch anwendungsreif?
  • Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung?
  • Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind?
  • Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?
1145710785
Data Privacy in der Praxis: Datenschutz in Data-Science-Projekten verbessern
Bewährte Praktiken zur Verbesserung von Privacy für Daten aus technischer, organisatorischer und rechtlicher Sicht
  • Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind
  • Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend
  • Umfasst auch Themen wie ChatGPT und Deep Fakes
  • Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies

Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen.

Das Buch beantwortet diese wichtigen Fragen:

  • Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science- Anwendungen aus?
  • Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren?
  • Wie funktionieren Federated Learning und Federated Analysis?
  • Homomorphe Verschlüsselung klingt großartig – doch ist sie auch anwendungsreif?
  • Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung?
  • Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind?
  • Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?
57.99 In Stock
Data Privacy in der Praxis: Datenschutz in Data-Science-Projekten verbessern

Data Privacy in der Praxis: Datenschutz in Data-Science-Projekten verbessern

Data Privacy in der Praxis: Datenschutz in Data-Science-Projekten verbessern

Data Privacy in der Praxis: Datenschutz in Data-Science-Projekten verbessern

eBook

$57.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

Bewährte Praktiken zur Verbesserung von Privacy für Daten aus technischer, organisatorischer und rechtlicher Sicht
  • Das Buch zeigt, wie Sie dafür sorgen, dass die Daten in Ihrem Projekt privat, anonymisiert und sicher sind
  • Auf den europäischen Markt zugeschnitten, behandelt die DSGVO eingehend
  • Umfasst auch Themen wie ChatGPT und Deep Fakes
  • Katharine Jarmul ist eine renommierte Privacy-Spezialistin. Sie arbeitet für Thoughtworks und ist Mitgründerin der PyLadies

Die Anforderungen an den Datenschutz sind in Daten- und KI-Projekten heute so hoch wie nie. Die Integration von Privacy in Datensysteme ist jedoch nach wie vor komplex. Dieser Leitfaden vermittelt Data Scientists und Data Engineers ein grundlegendes Verständnis von modernen Datenschutzbausteinen wie Differential Privacy, Federated Learning und homomorpher Verschlüsselung. Privacy-Spezialistin Katharine Jarmul zeigt Best Practices und gibt praxiserprobte Ratschläge für den Einsatz bahnbrechender Technologien zur Verbesserung des Datenschutzes in Produktivsystemen.

Das Buch beantwortet diese wichtigen Fragen:

  • Wie wirken sich Datenschutzbestimmungen wie die DSGVO oder der California Consumer Privacy Act (CCPA) auf meine Datenworkflows und Data-Science- Anwendungen aus?
  • Was ist unter »anonymisierten Daten« zu verstehen und wie lassen sich Daten anonymisieren?
  • Wie funktionieren Federated Learning und Federated Analysis?
  • Homomorphe Verschlüsselung klingt großartig – doch ist sie auch anwendungsreif?
  • Wie kann ich datenschutzwahrende Technologien und Verfahren miteinander vergleichen, um die für mich beste Wahl zu treffen? Welche Open-Source-Bibliotheken stehen hierfür zur Verfügung?
  • Wie stelle ich sicher, dass meine Data-Science-Projekte von vornherein geschützt und sicher sind?
  • Wie kann ich mit den für Governance und Informationssicherheit verantwortlichen Teams zusammenarbeiten, um interne Richtlinien in geeigneter Weise umzusetzen?

Product Details

ISBN-13: 9783960108177
Publisher: O'Reilly Media, Incorporated
Publication date: 06/25/2024
Series: Animals
Sold by: Bookwire
Format: eBook
Pages: 413
File size: 5 MB
Language: German

About the Author

Katharine Jarmul ist Datenschutzaktivistin und Data Scientist, ihre Arbeit und Forschung konzentriert sich auf Privacy und Sicherheit in Data-Science-Workflows. Sie arbeitet als Principal Data Scientist bei Thoughtworks und war in zahlreichen Führungspositionen und als unabhängige Beraterin bei großen Unternehmen und Start-ups in den USA und Deutschland tätig, wo sie Daten- und Machine-Lerning-Systeme mit integrierter Privacy und Sicherheit entwickelt hat.
From the B&N Reads Blog

Customer Reviews