Table of Contents
About the Authors xi
Preface xiii
Chapter 1 Introduction 2
1.1 Analytics 3
1.2 Why Visualize Data? 4
Data Visualization for Exploration 4
Data Visualization for Explanation 7
1.3 Types of Data 8
Quantitative and Categorical Data 8
Cross-Sectional and Time Series Data 9
Big Data 10
1.4 Data Visualization in Practice 11
Accounting 11
Finance 12
Human Resource Management 13
Marketing 14
Operations 14
Engineering 16
Sciences 16
Sports 17
Summary 18
Glossary 19
Problems 20
Chapter 2 Selecting a Chart Type 26
2.1 Defining the Goal of Your Data Visualization 28
Selecting an Appropriate Chart 28
2.2 Creating and Editing Charts in Excel 29
Creating a Chart in Excel 30
Editing a Chart in Excel 30
2.3 Scatter Charts and Bubble Charts 32
Scatter Charts 32
Bubble Charts 33
2.4 Line Charts, Column Charts, and Bar Charts 35
Line Charts 35
Column Charts 39
Bar Charts 41
2.5 Maps 42
Geographic Maps 42
Heat Maps 44
Treemaps 45
2.6 When to Use Tables 47
Tables versus Charts 47
2.7 Other Specialized Charts 49
Waterfall Charts 49
Stock Charts 51
Funnel Charts 52
2.8 A Summary Guide to Chart Selection 54
Guidelines for Selecting a Chart 54
Some Charts to Avoid 55
Excel's Recommended Charts Tool 57
Summary 59
Glossary 60
Problems 61
Chapter 3 Data Visualization and Design 76
3.1 Preattentive Attributes 78
Color 81
Form 81
Length and Width 84
Spatial Positioning 87
Movement 87
3.2 Gestalt Principles 88
Similarity 88
Proximity 88
Enclosure 89
Connection 89
3.3 Data-Ink Ratio 91
3.4 Other Data Visualization Design Issues 98
Minimizing Eye Travel 98
Choosing a Font for Text 100
3.5 Common Mistakes in Data Visualization Design 102
Wrong Type of Visualization 102
Trying to Display Too Much Information 104
Using Excel Default Settings for Charts 106
Too Many Attributes 108
Unnecessary Use of 3D 109
Summary 111
Glossary 111
Problems 112
Chapter 4 Purposeful Use of Color 128
4.1 Color and Perception 130
Attributes of Color: Hue, Saturation, and Luminance 130
Color Psychology and Color Symbolism 132
Perceived Color 132
4.2 Color Schemes and Types of Data 135
Categorical Color Schemes 135
Sequential Color Schemes 137
Diverging Color Schemes 139
4.3 Custom Color Using the HSL Color System 141
4.4 Common Mistakes in the Use of Color in Data Visualization 146
Unnecessary Color 146
Excessive Color 148
Insufficient Contrast 151
Inconsistency Across Related Charts 153
Neglecting Colorblindness 153
Not Considering the Mode of Delivery 156
Summary 156
Glossary 157
Problems 157
Chapter 5 Visualizing Variability 174
5.1 Creating Distributions from Data 176
Frequency Distributions for Categorical Data 176
Relative Frequency and Percent Frequency 179
Visualizing Distributions of Quantitative Data 181
5.2 Statistical Analysis of Distributions of Quantitative Variables 193
Measures of Location 193
Measures of Variability 194
Box and Whisker Charts 197
5.3 Uncertainty in Sample Statistics 200
Displaying a Confidence Interval on a Mean 201
Displaying a Confidence Interval on a Proportion 203
5.4 Uncertainty in Predictive Models 205
Illustrating Prediction Intervals for a Simple Linear Regression Model 205
Illustrating Prediction Intervals for a Time Series Model 208
Summary 211
Glossary 211
Problems 213
Chapter 6 Exploring Data Visually 226
6.1 Introduction to Exploratory Data Analysis 228
Espléndido Jugo y Batido, Inc. Example 229
Organizing Data to Facilitate Exploration 230
6.2 Analyzing Variables One at a Time 234
Exploring a Categorical Variable 234
Exploring a Quantitative Variable 237
6.3 Relationships between Variables 242
Crosstabulation 242
Association between Two Quantitative Variables 247
6.4 Analysis of Missing Data 256
Types of Missing Data 256
Exploring Patterns Associated with Missing Data 258
6.5 Visualizing Time-Series Data 260
Viewing Data at Different Temporal Frequencies 260
Highlighting Patterns in Time Series Data 262
Rearranging Data for Visualization 266
6.6 Visualizing Geospatial Data 269
Choropleth Maps 269
Cartograms 272
Summary 273
Glossary 274
Problems 275
Chapter 7 Explaining Visually to Influence with Data 284
7.1 Know Your Audience 287
Audience Member Needs 287
Audience Member Analytical Comfort Levels 289
7.2 Know Your Message 292
What Helps the Decision Maker? 293
Empathizing with Data 294
7.3 Storytelling with Charts 300
Choosing the Correct Chart to Tell Your Story 300
Using Preattentive Attributes to Tell Your Story 304
7.4 Bringing It All Together: Storytelling and Presentation Design 306
Aristotle's Rhetorical Triangle 307
Freytag's Pyramid 308
Storyboarding 311
Summary 313
Glossary 313
Problems 314
Chapter 8 Data Dashboards 322
8.1 What Is a Data Dashboard? 324
Principles of Effective Data Dashboards 325
Applications of Data Dashboards 325
8.2 Data Dashboards Taxonomies 327
Data Updates 327
User Interaction 327
Organizational Function 328
8.3 Data Dashboard Design 328
Understanding the Purpose of the Data Dashboard 329
Considering the Needs of the Data Dashboard's Users 329
Data Dashboard Engineering 330
8.4 Using Excel Tools to Build a Data Dashboard 331
Espléndido Jugo y Batido, Inc. 331
Using PivotTables, PivotCharts, and Slicers to Build a Data Dashboard 332
Linking Slicers to Multiple PivotTables 343
Protecting a Data Dashboard 346
Final Review of a Data Dashboard 347
8.5 Common Mistakes in Data Dashboard Design 348
Summary 349
Glossary 349
Problems 350
Chapter 9 Telling the Truth with Data Visualization 360
9.1 Missing Data and Data Errors 363
Identifying Missing Data 363
Identifying Data Errors 366
9.2 Biased Data 369
Selection Bias 369
Survivor Bias 372
9.3 Adjusting for Inflation 374
9.4 Deceptive Design 377
Design of Chart Axes 377
Dual-Axis Charts 381
Data Selection and Temporal Frequency 382
Issues Related to Geographic Maps 386
Summary 388
Glossary 389
Problems 389
References 397
Index 399