Deep Generative Modeling

This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others.

Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling.
In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm

The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

 

 

 

1140528658
Deep Generative Modeling

This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others.

Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling.
In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm

The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

 

 

 

59.99 In Stock
Deep Generative Modeling

Deep Generative Modeling

by Jakub M. Tomczak
Deep Generative Modeling

Deep Generative Modeling

by Jakub M. Tomczak

eBookSecond Edition 2024 (Second Edition 2024)

$59.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This first comprehensive book on models behind Generative AI has been thoroughly revised to cover all major classes of deep generative models: mixture models, Probabilistic Circuits, Autoregressive Models, Flow-based Models, Latent Variable Models, GANs, Hybrid Models, Score-based Generative Models, Energy-based Models, and Large Language Models. In addition, Generative AI Systems are discussed, demonstrating how deep generative models can be used for neural compression, among others.

Deep Generative Modeling is designed to appeal to curious students, engineers, and researchers with a modest mathematical background in undergraduate calculus, linear algebra, probability theory, and the basics of machine learning, deep learning, and programming in Python and PyTorch (or other deep learning libraries). It should find interest among students and researchers from a variety of backgrounds, including computer science, engineering, data science, physics, and bioinformatics who wish to get familiar with deep generative modeling.
In order to engage with a reader, the book introduces fundamental concepts with specific examples and code snippets. The full code accompanying the book is available on the author's GitHub site: github.com/jmtomczak/intro_dgm

The ultimate aim of the book is to outline the most important techniques in deep generative modeling and, eventually, enable readers to formulate new models and implement them.

 

 

 


Product Details

ISBN-13: 9783031640872
Publisher: Springer-Verlag New York, LLC
Publication date: 09/10/2024
Sold by: Barnes & Noble
Format: eBook
File size: 41 MB
Note: This product may take a few minutes to download.

About the Author

Jakub Tomczak is an assistant professor of Artificial Intelligence in the Computational Intelligence group at Vrije Universiteit Amsterdam since November 2019. Before, from October 2018 to October 2019, he was a deep learning researcher (Staff Engineer) in Qualcomm AI Research in Amsterdam. From October 2016 to September 2018, he was a Marie Sklodowska-Curie Individual Fellow in Prof. Max Welling’s group at the University of Amsterdam. He obtained his Ph.D. in machine learning from the Wroclaw University of Technology. His research interests include probabilistic modeling, deep learning, approximate Bayesian modeling, and deep generative modeling (with special focus on Variational Auto-Encoders and Flow-based model).

Table of Contents

Why Deep Generative Modeling?.- Autoregressive Models.- Flow-based Models.- Latent Variable Models.- Hybrid Modeling.- Energy-based Models.- Generative Adversarial Networks.- Deep Generative Modeling for Neural Compression.- Useful Facts from Algebra and Calculus.- Useful Facts from Probability Theory and Statistics.- Index.
From the B&N Reads Blog

Customer Reviews