Design of Reinforced Concrete / Edition 9

Hardcover (Print)
Rent
Rent from BN.com
$59.19
(Save 75%)
Est. Return Date: 06/24/2015
Buy Used
Buy Used from BN.com
$139.85
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $94.80
Usually ships in 1-2 business days
(Save 60%)
Other sellers (Hardcover)
  • All (22) from $94.80   
  • New (9) from $167.21   
  • Used (13) from $94.80   
Close
Sort by
Page 1 of 3
Showing 1 – 10 of 22 (3 pages)
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$94.80
Seller since 2015

Feedback rating:

(56)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Good
2013 Hardcover Good

Ships from: Norfolk, VA

Usually ships in 1-2 business days

  • Canadian
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$94.80
Seller since 2009

Feedback rating:

(79)

Condition: Good
2013 Hardcover Good

Ships from: Milwaukee, WI

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$96.69
Seller since 2008

Feedback rating:

(3072)

Condition: Like New
Ships SAME or NEXT business day. We ship to APO/FPO addr. Choose EXPEDITED shipping and receive in 2-5 business days.

Ships from: Grandview Heights, OH

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$103.75
Seller since 2011

Feedback rating:

(70)

Condition: Good
May NOT include supplemental materials such as CDs and access codes. May include some highlighting or writing. Ships next business day! Choose expedited shipping for delivery in ... 2-6 business days! Read more Show Less

Ships from: Vancouver, WA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$114.80
Seller since 2002

Feedback rating:

(11930)

Condition: Good
May include moderately worn cover, writing, markings or slight discoloration. SKU:9781118129845-4-0

Ships from: Salem, OR

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$119.96
Seller since 2009

Feedback rating:

(11187)

Condition: Good
Used - Very Good Book. Shipped from US within 4 to 14 business days. Established seller since 2000

Ships from: Secaucus, NJ

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$120.38
Seller since 2008

Feedback rating:

(18484)

Condition: Acceptable
Used, Acceptable Condition, may show signs of wear and previous use. Please allow 4-14 business days for delivery. 100% Money Back Guarantee, Over 1,000,000 customers served.

Ships from: Westminster, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
$120.55
Seller since 2002

Feedback rating:

(11930)

Condition: Very Good
Has minor wear and/or markings. SKU:9781118129845-3-0

Ships from: Salem, OR

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$121.04
Seller since 2005

Feedback rating:

(49776)

Condition: Very Good
Ships same day or next business day via UPS (Priority Mail for AK/HI/APO/PO Boxes)! Used sticker and some writing and/or highlighting. Used books may not include working access ... code or dust jacket. Read more Show Less

Ships from: Columbia, MO

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$126.37
Seller since 2008

Feedback rating:

(18484)

Condition: Like New
Brand New, Perfect Condition, Please allow 4-14 business days for delivery. 100% Money Back Guarantee, Over 1,000,000 customers served.

Ships from: Westminster, MD

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 3
Showing 1 – 10 of 22 (3 pages)
Close
Sort by

Overview

"Jack McCormac and James Nelson's Design of Reinforced Concrete introduce the fundamental principles of reinforced concrete design in a manner that is easy to understand, and illustrate those principles with numerous examples." Building on a highly successful tradition, this revised and thoroughly updated Sixth Edition now features a new chapter on system design and reflects the most recent Building Code Requirements for Structural Concrete from the American Concrete Institute.
Read More Show Less

Editorial Reviews

Booknews
This textbook for an introductory three credit course covers analysis and design of beams, columns, footings, walls, and two-way slabs. The fifth edition is updated to agree with the 1999 American Concrete Institute Code, and adds information relating to high strength concretes, fiber reinforced concretes, and shear walls. The CD-ROM contains the CONCAD program for solving problems. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9781118129845
  • Publisher: Wiley, John & Sons, Incorporated
  • Publication date: 2/19/2013
  • Edition description: New Edition
  • Edition number: 9
  • Pages: 714
  • Sales rank: 572,698
  • Product dimensions: 8.20 (w) x 10.10 (h) x 1.10 (d)

Meet the Author

Jack C. McCormac is a retired Clemson civil engineeringprofessor named by the Engineering News Record as one of the top125 engineers or architects in the world in the last 125 years forhis contributions to education. McCormac has authored orco-authored seven engineering textbooks, with more than half amillion copies now in print. His current books have been adopted atmore than 500 universities throughout the world. McCormac holds aBS in civil engineering from the Citadel, an MS in civilengineering from Massachusetts Institute of Technology and a Doctorof Letters from Clemson University. Named an Alumni DistinguishedProfessor, he taught at Clemson for approximately thirty-four yearsbefore retiring in 1989. He is included in the International Who'sWho in Engineering.

Russell H. Brown chaired the Civil Engineering Departmentat Clemson University for 17 years and recently retired. Hereceived his BS degree from the University of Houston and his Ph.D.from Rice University.  He is former chairman of ASTM CommitteeC15, former chair of the Flexure and Axial Loads Subcommittee ofthe Masonry Standards Joint Committee, and Founding Member andHonorary Member of the Masonry Society. He received the John ScalziAward for his research in structural masonry and twice receivedASTM’s Alan Yorkdale Award for his research publications.

Read More Show Less

Table of Contents

Preface xv

1 Introduction 1

1.1 Concrete and Reinforced Concrete, 1

1.2 Advantages of Reinforced Concrete as a Structural Material,1

1.3 Disadvantages of Reinforced Concrete as a StructuralMaterial, 2

1.4 Historical Background, 3

1.5 Comparison of Reinforced Concrete and Structural Steel forBuildings and Bridges, 5

1.6 Compatibility of Concrete and Steel, 6

1.7 Design Codes, 6

1.8 SI Units and Shaded Areas, 7

1.9 Types of Portland Cement, 7

1.10 Admixtures, 9

1.11 Properties of Concrete, 10

1.12 Aggregates, 18

1.13 High-Strength Concretes, 19

1.14 Fiber-Reinforced Concretes, 20

1.15 Concrete Durability, 21

1.16 Reinforcing Steel, 22

1.17 Grades of Reinforcing Steel, 24

1.18 SI Bar Sizes and Material Strengths, 25

1.19 Corrosive Environments, 26

1.20 Identifying Marks on Reinforcing Bars, 26

1.21 Introduction to Loads, 28

1.22 Dead Loads, 28

1.23 Live Loads, 29

1.24 Environmental Loads, 30

1.25 Selection of Design Loads, 32

1.26 Calculation Accuracy, 33

1.27 Impact of Computers on Reinforced Concrete Design, 34

Problems, 34

2 Flexural Analysis of Beams 35

2.1 Introduction, 35

2.2 Cracking Moment, 38

2.3 Elastic Stresses—Concrete Cracked, 41

2.4 Ultimate or Nominal Flexural Moments, 48

2.5 SI Example, 51

2.6 Computer Examples, 52

Problems, 54

3 Strength Analysis of Beams According to ACI Code65

3.1 Design Methods, 65

3.2 Advantages of Strength Design, 66

3.3 Structural Safety, 66

3.4 Derivation of Beam Expressions, 67

3.5 Strains in Flexural Members, 70

3.6 Balanced Sections, Tension-Controlled Sections, andCompression-Controlled or Brittle Sections, 71

3.7 Strength Reduction or φ Factors, 71

3.8 Minimum Percentage of Steel, 74

3.9 Balanced Steel Percentage, 75

3.10 Example Problems, 76

3.11 Computer Examples, 79

Problems, 80

4 Design of Rectangular Beams and One-Way Slabs 82

4.1 Load Factors, 82

4.2 Design of Rectangular Beams, 85

4.3 Beam Design Examples, 89

4.4 Miscellaneous Beam Considerations, 95

4.5 Determining Steel Area When Beam Dimensions ArePredetermined, 96

4.6 Bundled Bars, 98

4.7 One-Way Slabs, 99

4.8 Cantilever Beams and Continuous Beams, 102

4.9 SI Example, 103

4.10 Computer Example, 105

Problems, 106

5 Analysis and Design of T Beams and Doubly ReinforcedBeams 112

5.1 T Beams, 112

5.2 Analysis of T Beams, 114

5.3 Another Method for Analyzing T Beams, 118

5.4 Design of T Beams, 120

5.5 Design of T Beams for Negative Moments, 125

5.6 L-Shaped Beams, 127

5.7 Compression Steel, 127

5.8 Design of Doubly Reinforced Beams, 132

5.9 SI Examples, 136

5.10 Computer Examples, 138

Problems, 143

6 Serviceability 154

6.1 Introduction, 154

6.2 Importance of Deflections, 154

6.3 Control of Deflections, 155

6.4 Calculation of Deflections, 157

6.5 Effective Moments of Inertia, 158

6.6 Long-Term Deflections, 160

6.7 Simple-Beam Deflections, 162

6.8 Continuous-Beam Deflections, 164

6.9 Types of Cracks, 170

6.10 Control of Flexural Cracks, 171

6.11 ACI Code Provisions Concerning Cracks, 175

6.12 Miscellaneous Cracks, 176

6.13 SI Example, 176

6.14 Computer Example, 177

Problems, 179

7 Bond, Development Lengths, and Splices 184

7.1 Cutting Off or Bending Bars, 184

7.2 Bond Stresses, 187

7.3 Development Lengths for Tension Reinforcing, 189

7.4 Development Lengths for Bundled Bars, 197

7.5 Hooks, 199

7.6 Development Lengths for Welded Wire Fabric in Tension,203

7.7 Development Lengths for Compression Bars, 204

7.8 Critical Sections for Development Length, 206

7.9 Effect of Combined Shear and Moment on Development Lengths,206

7.10 Effect of Shape of Moment Diagram on Development Lengths,207

7.11 Cutting Off or Bending Bars (Continued), 208

7.12 Bar Splices in Flexural Members, 211

7.13 Tension Splices, 213

7.14 Compression Splices, 213

7.15 Headed and Mechanically Anchored Bars, 214

7.16 SI Example, 215

7.17 Computer Example, 216

Problems, 217

8 Shear and Diagonal Tension 223

8.1 Introduction, 223

8.2 Shear Stresses in Concrete Beams, 223

8.3 Lightweight Concrete, 224

8.4 Shear Strength of Concrete, 225

8.5 Shear Cracking of Reinforced Concrete Beams, 226

8.6 Web Reinforcement, 227

8.7 Behavior of Beams with Web Reinforcement, 229

8.8 Design for Shear, 231

8.9 ACI Code Requirements, 232

8.10 Shear Design Example Problems, 237

8.11 Economical Spacing of Stirrups, 247

8.12 Shear Friction and Corbels, 249

8.13 Shear Strength of Members Subjected to Axial Forces,251

8.14 Shear Design Provisions for Deep Beams, 253

8.15 Introductory Comments on Torsion, 254

8.16 SI Example, 256

8.17 Computer Example, 257

Problems, 258

9 Introduction to Columns 263

9.1 General, 263

9.2 Types of Columns, 264

9.3 Axial Load Capacity of Columns, 266

9.4 Failure of Tied and Spiral Columns, 266

9.5 Code Requirements for Cast-in-Place Columns, 269

9.6 Safety Provisions for Columns, 271

9.7 Design Formulas, 272

9.8 Comments on Economical Column Design, 273

9.9 Design of Axially Loaded Columns, 274

9.10 SI Example, 277

9.11 Computer Example, 278

Problems, 279

10 Design of Short Columns Subject to Axial Load andBending 281

10.1 Axial Load and Bending, 281

10.2 The Plastic Centroid, 282

10.3 Development of Interaction Diagrams, 284

10.4 Use of Interaction Diagrams, 290

10.5 Code Modifications of Column Interaction Diagrams, 292

10.6 Design and Analysis of Eccentrically Loaded Columns UsingInteraction Diagrams, 294

10.7 Shear in Columns, 301

10.8 Biaxial Bending, 302

10.9 Design of Biaxially Loaded Columns, 306

10.10 Continued Discussion of Capacity Reduction Factors,φ, 309

10.11 Computer Example, 311

Problems, 312

11 Slender Columns 317

11.1 Introduction, 317

11.2 Nonsway and Sway Frames, 317

11.3 Slenderness Effects, 318

11.4 Determining k Factors with Alignment Charts, 321

11.5 Determining k Factors with Equations, 322

11.6 First-Order Analyses Using Special Member Properties,323

11.7 Slender Columns in Nonsway and Sway Frames, 324

11.8 ACI Code Treatments of Slenderness Effects, 328

11.9 Magnification of Column Moments in Nonsway Frames, 328

11.10 Magnification of Column Moments in Sway Frames, 333

11.11 Analysis of Sway Frames, 336

11.12 Computer Examples, 342

Problems, 344

12 Footings 347

12.1 Introduction, 347

12.2 Types of Footings, 347

12.3 Actual Soil Pressures, 350

12.4 Allowable Soil Pressures, 351

12.5 Design of Wall Footings, 352

12.6 Design of Square Isolated Footings, 357

12.7 Footings Supporting Round or Regular Polygon-ShapedColumns, 364

12.8 Load Transfer from Columns to Footings, 364

12.9 Rectangular Isolated Footings, 369

12.10 Combined Footings, 372

12.11 Footing Design for Equal Settlements, 378

12.12 Footings Subjected to Axial Loads and Moments, 380

12.13 Transfer of Horizontal Forces, 382

12.14 Plain Concrete Footings, 383

12.15 SI Example, 386

12.16 Computer Examples, 388

Problems, 391

13 Retaining Walls 394

13.1 Introduction, 394

13.2 Types of Retaining Walls, 394

13.3 Drainage, 397

13.4 Failures of Retaining Walls, 398

13.5 Lateral Pressure on Retaining Walls, 399

13.6 Footing Soil Pressures, 404

13.7 Design of Semigravity Retaining Walls, 405

13.8 Effect of Surcharge, 408

13.9 Estimating the Sizes of Cantilever Retaining Walls, 409

13.10 Design Procedure for Cantilever Retaining Walls, 413

13.11 Cracks and Wall Joints, 424

Problems, 426

14 Continuous Reinforced Concrete Structures431

14.1 Introduction, 431

14.2 General Discussion of Analysis Methods, 431

14.3 Qualitative Influence Lines, 431

14.4 Limit Design, 434

14.5 Limit Design under the ACI Code, 442

14.6 Preliminary Design of Members, 445

14.7 Approximate Analysis of Continuous Frames for VerticalLoads, 445

14.8 Approximate Analysis of Continuous Frames for LateralLoads, 454

14.9 Computer Analysis of Building Frames, 458

14.10 Lateral Bracing for Buildings, 459

14.11 Development Length Requirements for Continuous Members,459

Problems, 465

15 Torsion 470

15.1 Introduction, 470

15.2 Torsional Reinforcing, 471

15.3 Torsional Moments that Have to Be Considered in Design,474

15.4 Torsional Stresses, 475

15.5 When Torsional Reinforcing Is Required by the ACI, 476

15.6 Torsional Moment Strength, 477

15.7 Design of Torsional Reinforcing, 478

15.8 Additional ACI Requirements, 479

15.9 Example Problems Using U.S. Customary Units, 480

15.10 SI Equations and Example Problem, 483

15.11 Computer Example, 487

Problems, 488

16 Two-Way Slabs, Direct Design Method 492

16.1 Introduction, 492

16.2 Analysis of Two-Way Slabs, 495

16.3 Design of Two-Way Slabs by the ACI Code, 495

16.4 Column and Middle Strips, 496

16.5 Shear Resistance of Slabs, 497

16.6 Depth Limitations and Stiffness Requirements, 500

16.7 Limitations of Direct Design Method, 505

16.8 Distribution of Moments in Slabs, 506

16.9 Design of an Interior Flat Plate, 511

16.10 Placing of Live Loads, 514

16.11 Analysis of Two-Way Slabs with Beams, 517

16.12 Transfer of Moments and Shears between Slabs and Columns,522

16.13 Openings in Slab Systems, 528

16.14 Computer Example, 528

Problems, 530

17 Two-Way Slabs, Equivalent Frame Method 532

17.1 Moment Distribution for Nonprismatic Members, 532

17.2 Introduction to the Equivalent Frame Method, 533

17.3 Properties of Slab Beams, 535

17.4 Properties of Columns, 538

17.5 Example Problem, 540

17.6 Computer Analysis, 544

17.7 Computer Example, 545

Problems, 546

18 Walls 547

18.1 Introduction, 547

18.2 Non–Load-Bearing Walls, 547

18.3 Load-Bearing Concrete Walls—Empirical Design Method,549

18.4 Load-Bearing Concrete Walls—Rational Design, 552

18.5 Shear Walls, 554

18.6 ACI Provisions for Shear Walls, 558

18.7 Economy in Wall Construction, 563

18.8 Computer Example, 564

Problems, 565

19 Prestressed Concrete 567

19.1 Introduction, 567

19.2 Advantages and Disadvantages of Prestressed Concrete,569

19.3 Pretensioning and Posttensioning, 569

19.4 Materials Used for Prestressed Concrete, 570

19.5 Stress Calculations, 572

19.6 Shapes of Prestressed Sections, 576

19.7 Prestress Losses, 579

19.8 Ultimate Strength of Prestressed Sections, 582

19.9 Deflections, 586

19.10 Shear in Prestressed Sections, 590

19.11 Design of Shear Reinforcement, 591

19.12 Additional Topics, 595

19.13 Computer Example, 597

Problems, 598

20 Reinforced Concrete Masonry 602

20.1 Introduction, 602

20.2 Masonry Materials, 602

20.3 Specified Compressive Strength of Masonry, 606

20.4 Maximum Flexural Tensile Reinforcement, 607

20.5 Walls with Out-of-Plane Loads—Non–Load-BearingWalls, 607

20.6 Masonry Lintels, 611

20.7 Walls with Out-of-Plane Loads—Load-Bearing, 616

20.8 Walls with In-Plane Loading—Shear Walls, 623

20.9 Computer Example, 628

Problems, 630

A Tables and Graphs: U.S. Customary Units 631

B Tables in SI Units 669

C The Strut-and-Tie Method of Design 675

C.1 Introduction, 675

C.2 Deep Beams, 675

C.3 Shear Span and Behavior Regions, 675

C.4 Truss Analogy, 677

C.5 Definitions, 678

C.6 ACI Code Requirements for Strut-and-Tie Design, 678

C.7 Selecting a Truss Model, 679

C.8 Angles of Struts in Truss Models, 681

C.9 Design Procedure, 682

D Seismic Design of Reinforced Concrete Structures683

D.1 Introduction, 683

D.2 Maximum Considered Earthquake, 684

D.3 Soil Site Class, 684

D.4 Risk and Importance Factors, 686

D.5 Seismic Design Categories, 687

D.6 Seismic Design Loads, 687

D.7 Detailing Requirements for Different Classes of ReinforcedConcrete Moment Frames, 691

Problems, 698

Glossary 699

Index

Read More Show Less

Customer Reviews

Average Rating 5
( 1 )
Rating Distribution

5 Star

(1)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted September 3, 2013

    No text was provided for this review.

Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)