Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.



Author Chip Huyen, cofounder of Claypot AI, considers each design decision-such as how to process and create training data, which features to use, how often to retrain models, and what to monitor-in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.



This book will help you tackle scenarios such as engineering data and choosing the right metrics to solve a business problem; automating the process for continually developing, evaluating, deploying, and updating models; developing a monitoring system to quickly detect and address issues your models might encounter in production; architecting an ML platform that serves across use cases; and developing responsible ML systems.
1140530179
Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications
Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.



Author Chip Huyen, cofounder of Claypot AI, considers each design decision-such as how to process and create training data, which features to use, how often to retrain models, and what to monitor-in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.



This book will help you tackle scenarios such as engineering data and choosing the right metrics to solve a business problem; automating the process for continually developing, evaluating, deploying, and updating models; developing a monitoring system to quickly detect and address issues your models might encounter in production; architecting an ML platform that serves across use cases; and developing responsible ML systems.
24.99 In Stock
Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications

Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications

by Chip Huyen

Narrated by Kathleen Li

Unabridged — 12 hours, 55 minutes

Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications

Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications

by Chip Huyen

Narrated by Kathleen Li

Unabridged — 12 hours, 55 minutes

Audiobook (Digital)

$24.99
FREE With a B&N Audiobooks Subscription | Cancel Anytime
$0.00

Free with a B&N Audiobooks Subscription | Cancel Anytime

START FREE TRIAL

Already Subscribed? 

Sign in to Your BN.com Account


Listen on the free Barnes & Noble NOOK app


Related collections and offers

FREE

with a B&N Audiobooks Subscription

Or Pay $24.99

Overview

Machine learning systems are both complex and unique. Complex because they consist of many different components and involve many different stakeholders. Unique because they're data dependent, with data varying wildly from one use case to the next. In this book, you'll learn a holistic approach to designing ML systems that are reliable, scalable, maintainable, and adaptive to changing environments and business requirements.



Author Chip Huyen, cofounder of Claypot AI, considers each design decision-such as how to process and create training data, which features to use, how often to retrain models, and what to monitor-in the context of how it can help your system as a whole achieve its objectives. The iterative framework in this book uses actual case studies backed by ample references.



This book will help you tackle scenarios such as engineering data and choosing the right metrics to solve a business problem; automating the process for continually developing, evaluating, deploying, and updating models; developing a monitoring system to quickly detect and address issues your models might encounter in production; architecting an ML platform that serves across use cases; and developing responsible ML systems.

Product Details

BN ID: 2940194606412
Publisher: Ascent Audio
Publication date: 07/08/2025
Edition description: Unabridged
From the B&N Reads Blog

Customer Reviews