Designing Storage Area Networks: A Practical Reference for Implementing Fibre Channel and IP SANs, Second Edition / Edition 2

Paperback (Print)
Buy Used
Buy Used from BN.com
$38.23
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $1.99
Usually ships in 1-2 business days
(Save 96%)
Other sellers (Paperback)
  • All (19) from $1.99   
  • New (6) from $49.84   
  • Used (13) from $1.99   

Overview

Designing Storage Area Networks, Second Edition , succinctly captures the key technologies that are driving the storage networking industry. Tom Clark's works are helping to educate the IT community to the benefits and challenges of shared storage and are recommended reading for anyone wishing to understand this exciting new technology."

—Sheila Childs, VP Product Management, Legato Systems Chairperson, SNIA

Fibre Channel SANs have become a mainstay at the backend of the biggest corporations on the planet. The second edition of Designing Storage Area Networks brings the next wave of connection (IP) points and management into context, helping the user to quickly understand all the benefits before them."

—Steve Duplessie, Founder and Senior Analyst, Enterprise Storage Group

Designing Storage Area Networks, Second Edition , provides a practical roadmap through the ever-changing landscape of SAN technology. The new Fibre Channel, IP, and virtualization initiatives covered in this work will enable customers to implement comprehensive shared storage solutions that reduce management overhead and cost."

—John Webster, Founder and SeniorAnalyst, Data Mobility Group

Storage Area Networks (SANs) are now recognized as the preferred solution for fulfilling institutions' and enterprises' critical data-storage needs. Whether powered by Fibre Channel or TCP/IP and Gigabit Ethernet technology, SANs far exceed the capabilities of traditional storage access methods. SANs are quickly becoming the solution of choice for organizations that require high-volume data-handling capacity.

Written for network developers, IT consultants, administrators, and managers, this updated and greatly expanded edition of the best-selling Designing Storage Area Networks goes far beyond a straight description of technical specifications and standards. The text offers practical guidelines for using diverse SAN technologies to solve existing networking problems in large-scale corporate networks. With this book you will learn how the technologies work and how to organize their components into an effective, scalable design. In doing so, you will discover today's best methods for managing storage area networks, including new troubleshooting techniques.

Designing Storage Area Networks, Second Edition , also features detailed case studies that demonstrate how SANs can solve a number of commonly encountered business challenges, including LAN-free and server-free tape backup, server clustering, and disaster recovery. As an information-systems professional, you must keep pace with this powerful, evolving technology.

Key topic coverage includes:

  • Using the SNIA Shared Storage Model
  • Fibre Channel layers and protocols
  • Fabrics and fabric switches
  • Host bus adapters
  • Fibre Channel RAID and Fibre Channel JBODs
  • iSCSI and IP storage protocols and products
  • SAN management and problem isolation techniques
  • Building extended SANs for data center and remote storage access

0321136500B02242003

Read More Show Less

Product Details

  • ISBN-13: 9780321136503
  • Publisher: Addison-Wesley
  • Publication date: 5/2/2003
  • Edition description: Subsequent
  • Edition number: 2
  • Pages: 572
  • Product dimensions: 7.38 (w) x 9.26 (h) x 1.30 (d)

Meet the Author

Tom Clark is Director of Technical Marketing for Vixel Corporation, a manufacturer of Fibre Channel transceivers, hubs, fabric switches, and SAN management software. During his 15-year career in system engineering, he has gained extensive experience in data communications and internetworking, has published numerous articles on Fibre Channel technology, and has presented papers at several conferences, including Fibre Channel Technologies Conference and Expo.

0321136500AB12242002

Read More Show Less

Table of Contents

Preface.

Acknowledgments.

1. Introduction.

Using the SNIA Shared Storage Model.

Example: Carlson Companies.

Text Overview.

Chapter Summary.

2. Storage and Networking Concepts.

Networking in front of the Server.

Serial Transport.

Access Method.

Addressing.

Packetizing of Data.

Routing of Packets.

Upper-Layer Protocol Support.

The SCSI Architecture.

The Parallel SCSI Bus.

Network-Attached Storage.

Networking behind the Server.

Chapter Summary.

3. Fibre Channel Internals.

Fibre Channel Layers.

1Gbps and 2Gbps Transport.

Physical Layer Options.

Data Encoding.

Ordered Sets.

Framing Protocol.

Classes of Service.

Flow Control.

Naming and Addressing Conventions.

Chapter Summary.

4. Fibre Channel SAN Topologies.

Point-to-Point.

Arbitrated Loop.

Loop Physical Topology.

Loop Addressing.

Loop Initialization.

Port Login.

Loop Port State Machine.

Arbitration.

The Nonbroadcast Nature of Arbitrated Loop.

Design Considerations for Arbitrated Loop.

Fabrics.

Fabric Login.

Simple Name Server.

State Change Notification.

Private Loop Support.

Fabric Zoning.

Building Extended Fabrics.

E_Port Standardization.

Principal Switch Selection.

Fabrics and Loops.

Chapter Summary.

5. Fibre Channel Products.

Transceivers.

Host Bus Adapters.

Fibre Channel RAID.

Fibre Channel JBODs.

Arbitrated Loop Hubs.

Star Topology for Arbitrated Loop.

Hub Architecture.

Unmanaged Hubs.

Managed Hubs.

Switching Hubs.

Fabric Switches.

Departmental Fabric Switches.

Fibre Channel Directors.

Fibre Channel-to-SCSI Bridges.

Fibre Channel Extension Products.

Fibre Channel Extension Using DWDM.

Fibre Channel Extension Using IP Tunneling.

Fibre Channel WAN Bridging.

Chapter Summary.

6. IP SAN Technology.

Ethernet and TCP/IP.

Gigabit Ethernet Transport.

TCP/IP.

Native IP Storage Protocols.

Internet Fibre Channel Protocol.

Internet SCSI (iSCSI).

Discovery in IP SANs.

Service Locator Protocol (SLP).

Internet Storage Name Server (iSNS).

Quality of Service for IP SANs.

Security for IP SANs.

Wide Area Storage Networking.

Chapter Summary.

7. IP SAN Products.

Gigabit Ethernet Switches.

IP Routers.

iSCSI Adapter Cards.

iSCSI Storage Devices.

IP Storage Gateways.

iSCSI-to-SCSI Bridges.

iSNS Servers.

Chapter Summary.

8. SAN Software Products.

Server Clustering.

Tape Backup.

Data Replication.

Distributed File Systems and File Sharing.

Chapter Summary.

9. Problem Isolation in SANs.

Simple Problem-Isolation Techniques.

Fibre Channel Analyzers.

iSCSI Network Analyzers.

Performance Tools.

Chapter Summary.

10. Management of SANs.

Storage Network Management.

In-Band Management.

Out-of-Band Management.

SNMP.

HTTP.

Telnet.

Storage Network Management Issues.

Storage Resource Management.

Storage Management.

Integration of Storage, Systems, and Enterprise Management.

Common Information Model (CIM) (Bluefin).

Chapter Summary.

11. Storage Virtualization.

What Is Storage Virtualization?

In-Band and Out-of-Band Virtualization.

Host-Based Storage Virtualization.

SAN Interconnect-Based Storage Virtualization.

Storage-Based Virtualization.

Multivendor Storage Virtualization.

File System and NAS Virtualization.

Tape Virtualization.

Virtualization and the Data Storage Utility.

Chapter Summary.

12. Application Studies.

Post-Production Video Editing.

Prepress Operations.

LAN-Free and Server-Free Tape Backup.

Server Clustering.

Storage Consolidation.

Internet Service Providers.

Campus Storage Networks.

Remote Tape Vaulting.

Disaster Recovery.

Chapter Summary.

13. SAN Issues.

Standardization.

Interoperability.

Management.

Convergence.

Chapter Summary.

14. The Future of SAN.

Integration of SANs into Mainstream Networking.

Ubiquity of Shared Storage.

Virtualization.

Human Factors.

Contributing Technologies.

Chapter Summary.

Appendix A. SAN Resources.

Standards and Proposals.

SCSI and Fibre Channel Standards.

IETF Requests for Comments.

IETF IP Storage Internet Drafts.

Gigabit Ethernet.

InfiniBand.

Fibre Channel Technical and Marketing.

IP Storage Technical and Marketing.

Related Web Resources.

Appendix B. SAN and Related Vendors.

SAN System Vendors.

SAN Storage and Tape Vendors.

Fibre Channel Products.

IP SAN Products.

SAN Extension.

SAN Management and Virtualization.

Gigabit Ethernet Vendors.

Test Equipment and Verification Labs.

Appendix C. The Standardization Process.

Appendix D. The Storage Networking Industry Association (SNIA).

Board of Directors.

Executive Director and Staff.

Board Advisors.

Technical Council.

Technical Director.

Technical Center Director.

SNIA Technology Center.

Customer Councils.

Committees.

Technical Workgroups.

Industry Forums.

SNIA IP Storage Industry Forum.

SNIA Supported Solutions Forum.

SNIA DAFS Forum.

SNIA Storage Security Industry Forum.

SNIA Europe Forum.

SNIA Japan Forum.

SNIA and Other Industry Associations.

Summary.

Appendix E. The SNIA Shared Storage Model.

Revision history.

Usage terms.

Executive summary.

Acknowledgments.

The shared storage vision.

Why shared storage?

The potential.

Why a model for shared storage?

Benefits of the model.

A note on the graphical conventions used in the model.

The SNIA Shared Storage Model.

Storage system components.

The layering scheme of the SNIA Shared Storage Model.

The file/record layer.

Where can it be done?

The block layer.

Putting it all togethercombining the block & file/record layers.

The services subsystem.

Additional topics.

Clustering.

Data versus storage.

Sharing of resources and data.

Modular systems.

Storage networks.

Some common storage architectures.

Direct-attached block storage.

Storage network-attached block storage (aka “SAN”).

Block storage aggregation in a storage network (“SAN applicance”).

Storage network-attached block storage with metadata server (“asymmetric block service”).

Multi-site block storage.

File server controller (“NAS head”).

NAS/file server metadata manager (“asymmetric file service”).

Object-based Storage Device (OSD), CMU NASD.

Summary and conclusions.

Status.

Appendix F. The SNIA Dictionary of Storage Networking Terminology.

Appendix G. SAN Essays.

SAN Customers and SAN Vendors.

Standardization and Storage Networking Technologies.

Standards Compliance versus Interoperability.

Storage Resource Management.

Going the Distance with Storage Data.

Shared Storage for the Masses.

SAN Security.

Infrastructures and Applications.

Disaster Recovery in an Uncertain World.

Enabling iSCSI Migration.

Bibliography.

Index. 0321136500T02282003

Read More Show Less

Preface

This book expands and updates the content of my earlier book Designing Storage Area Networks: A Practical Reference for Implementing Fibre Channel SANs, published in the winter of 1999. At a thin 202 pages, that book was the first to provide a brief overview of storage area network (SAN) technology and was widely adopted as an introductory and training text for both vendors and customers.

Because of the rapid growth and technical development within the storage industry over the past three years, however, new functionality and technology initiatives are already transforming the SAN landscape. Advances in Fibre Channel performance and switch technology, the introduction of SANs based on Transmission Control Protocol/Internet Protocol (TCP/IP) and Gigabit Ethernet, and the emergence of storage virtualization have given customers more options for addressing their data storage needs. Although some of these technical initiatives are presented in my second book, IP SANs: A Guide to iSCSI, iFCP, and FCIP Protocols for Storage Area Networks, this text focuses on the practical considerations implementers should think about in designing SAN solutions with today's diverse technologies.

Storage area networks are now recognized as the preferred solution for fulfilling a wide range of critical data storage needs for institutions and enterprises. The success of SANs in establishing real end-user value is affirmed by the adoption of the technology by all major solution providers as their flagship server and storage offerings. IBM, Hewlett-Packard, Sun, Dell, and others now provide certified SAN configurations for performance, high availability, and backup of storage data, and storage vendors such as EMC, Hitachi Data Systems, XIOtech, and others offer SAN interfaces on their premier products. Although the current market penetration of SAN-based solutions is only 20 percent of the total storage market, SANs are expected to capture the majority of the market within a few years.

The emergence of storage networking represents the fusion of two distinct technologies, each with its own priorities, vocabulary, and culture. For 20 years, the glacial pace of storage development gradually resulted in smaller, higher-capacity disks and faster channel performance, but this evolutionary inertia was always bounded by a rigid master/slave relationship between hosts and storage. By contrast, the rapid and more volatile development of networking technology has overturned previous architectures and relationships and, as demonstrated by the Internet, has delivered a global capability with innovative and enriched feature sets. Combining the more conservative outlook of storage with the more dynamic worldview of networking has resulted in a collision of cultures that has actually benefited both disciplines. Data storage has been transformed from the frumpy wallflower of data communications into a stellar attraction for investors, vendors, and technologists. Networking has gained an endless supply of high-volume data that further extends and justifies its presence throughout the enterprise. It has also gained new opportunities to create storage-specific interfaces and functionality.

This synthesis of storage and networking into a new technology has presented both challenges and opportunities for customers and vendors. Storage administrators and managers must now be conversant in networking concepts and consequences such as addressing, routing, and network convergence, and network architects and administrators must learn the mysteries of LUNs, JBODs, and RAID levels. This book is therefore written for a broad audience of IT managers, administrators, consultants, and technical staff whose responsibilities may span both storage and networking implementations. In addition, storage networking has generated new concepts and issues previously undefined by either storage or networking. The unexpected consequences of positioning storage in an open, networked environment are also examined in the text, and particularly in the applications studies.

Although storage networking is an enabling technology for dealing with the massive growth of storage data, it is often criticized for presenting persistent interoperability and management issues. Some of the problems associated with SANs are simply the byproduct of a new technology struggling to break new ground. Other problems are, unfortunately, vendor-induced in an effort to retain market share. Overcoming interoperability issues and management complexity is a prerequisite for wider-scale adoption of SAN technology, and several industry initiatives are now attempting to address the remaining obstacles. Although it may take several years for some of these efforts to bear fruit, this book discusses them to indicate where help is on the way.

In the first edition of Designing Storage Area Networks, the underlying infrastructure, or plumbing, for SANs was exclusively Fibre Channel. As the first successful gigabit serial transport, Fibre Channel pioneered the signaling and data-encoding mechanisms later adopted by Gigabit Ethernet. Had Gigabit Ethernet appeared first, it might have preempted Fibre Channel as a storage network transport. Although Ethernet has on its side the massive momentum of market presence in the rest of the data communications space, its tardy arrival in storage networking now puts it in conflict with the flourishing Fibre Channel. Although this contention has generated ongoing religious disputes among vendors, both Fibre Channel and Ethernet are, after all, simply plumbing. This book provides technical detail on both Fibre Channel and Ethernet-based SAN technologies, in the expectation that customers will make their own decisions on which transport best meets their needs. The vast majority of vendors selling SAN solutions are planning to provide both Fibre Channel and IP-based products to accommodate their customers' requirements.

The people who have direct responsibility for designing and implementing SANs have a desperate need for more detailed information on product capabilities and interoperability, information such as which version of a particular backup application works with a specific database or level of operating system. Given the lead time required for hard-copy publishing, it is impossible to capture this very useful but granular information. By the time such a text hit the stands, it would be outdated and of little value. The Storage Networking Industry Association (SNIA) is currently establishing end-user organizations that maintain online databases of customer issues and solutions. I urge any reader seeking more detailed information on SAN solutions to become involved in this SNIA-led effort and to help build the practical resources that will benefit the user community at large.

Designing a storage network requires, first of all, answering a basic question: What is the application? Customers do not, after all, spend millions of dollars on storage arrays, tape subsystems, switches, servers, and cabling for the sake of the technology itself. Applications are fostering SAN deployment, and applications are as varied as the core requirements of diverse institutions and enterprises. Although vendors may package canned solutions to fulfill common needs such as storage consolidation or tape backup, the SAN architect should avoid being driven by vendors, instead driving the vendors to solve their specific application requirements. This text attempts to define the most common applications that are more efficiently served by SAN technology, but these examples only begin to address a much broader spectrum of real-world applications that storage networking may benefit.

The Organization of This Book

This book takes you through a progression of concepts that in the end should provide a foundation for understanding storage networking infrastructures and applications. It assumes no prior knowledge of SANs and yet attempts to strike a balance between basic and advanced content. Hopefully, this mix will provide sufficient technical detail for those who need it and meaningful overview for those who want to understand SAN technology at a more abstract level.

The first two chapters provide a framework for understanding the central concepts of shared storage. Chapter 1 reviews the SNIA Shared Storage Model, which clearly abstracts the basic layers of storage applications and underlying infrastructure. The SNIA Shared Storage Model is a useful tool for understanding SAN architectures and positioning them in relation to upper-layer application requirements. It has also proven to be a useful tool for justifying SAN acquisitions to management by explaining how a particular solution will better serve business requirements. Chapter 2 provides an overview of storage and networking concepts and explains how the fusion of these ideas has created new means to solve data storage issues.

Because Fibre Channel was the first transport to appear on the storage networking scene and continues to ship in significant volumes, the next three chapters provide a technical discussion of Fibre Channel protocols, topologies, and products. Chapter 3 reviews lower-layer physical transport, protocols, and addressing. Chapter 4 reviews Fibre Channel topologies, with emphasis on the Fibre Channel fabric switch services provided by most SAN solutions today. Chapter 5 describes the product suite developed by vendors for Fibre Channel servers, storage, interconnects, and other components. Collectively, they provide a rich toolset for the SAN architect in designing efficient solutions.

Beginning in 2000, the initiative to transport storage data over mainstream TCP/IP networks generated IP storage networking architectures and products. These products further enhance the ability of SAN designers to craft shared storage configurations that leverage IP exclusively or integrate both IP and Fibre Channel into a heterogeneous storage network. Chapter 6 reviews the protocols and issues unique to IP SANs, and Chapter 7 describes IP storage products that have been introduced to the market over the past two years.

Chapter 8 provides an overview of storage-specific applications supported by the SAN infrastructure. Server clustering for high-availability data access, tape backup for data archiving, and data replication via disk mirroring are commonly deployed as part of a SAN solution, although these storage applications in turn are intended to serve high-level customer business applications and databases. Inevitably, the gains provided by SANs are accompanied by some pain. Although vendors attempt to debug and certify SAN configurations in advance, problems naturally arise during installation or subsequent operation. Chapter 9 explains some basic troubleshooting techniques and tools for identifying and isolating storage network problems.

Chapter 10 discusses SAN management and its unique challenges. Managers of shared storage must integrate transport management with management of data placement on disk or tape. Creating a unified management capability has been difficult, even for software vendors with ample resources to address SAN management. The Common Information Model (CIM) initiative, however, is at last getting traction in the industry and may provide the framework required for comprehensive management of storage networks.

Chapter 11 attempts to describe the amorphous entity known as "storage virtualization." Storage virtualization has suffered somewhat from excessive vendor marketing, but is a viable technology for simplifying storage administration and opening a broader market for SAN solutions. This chapter covers the theoretical capabilities of storage virtualization as well as the more limited functions currently available in shipping products.

Institutions and enterprises have been implementing SANs for a wide variety of applications. Some of these are discussed in Chapter 12, Application Studies, with examples of potential issues customers might face in the course of deploying and administering SANs. Where applicable, combinations of Fibre Channel and IP storage products are proposed, especially for addressing metropolitan and wide area SAN configurations.

Chapter 13 discusses the still unresolved issues of SAN technologies, including interoperability, management, and convergence of SANs with mainstream networking. For engineers, these issues are simply challenges to be mastered, provided that market competition does not artificially thwart their efforts. As a summary of SAN design, Chapter 14 offers speculation on the future of storage networking. That future promises to be as dynamic as the emergence of SANs was, with the rapid development of new storage initiatives such as virtualization and IP-based SANs, and accommodation of new host interconnects such as InfiniBand.

In this edition I have included in the appendixes additional material that may be useful as reference or background information on storage networking in general. The SNIA has produced some very valuable work in the form of the SNIA Shared Storage Model and the SNIA Dictionary. I encourage vendors as well as consumers of storage networking technology to take advantage of the SNIA's ongoing work and, when possible, to participate in SNIA activities. The more closely customers and technologists align their common goals, the more quickly viable solutions can be put into customers' hands.

0321136500P02282003

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)