Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany
This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.

1147083077
Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany
This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.

179.99 In Stock
Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany

Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany

Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany

Designing the Conceptual Landscape for a XAIR Validation Infrastructure: Proceedings of the International Workshop on Designing the Conceptual Landscape for a XAIR Validation Infrastructure, DCLXVI 2024, Kaiserslautern, Germany

Paperback

$179.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book focuses on explainable-AI-ready (XAIR) data and models, offering a comprehensive perspective on the foundations needed for transparency, interpretability, and trust in AI systems. It introduces novel strategies for metadata structuring, conceptual analysis, and validation frameworks, addressing critical challenges in regulation, ethics, and responsible machine learning.
Furthermore, it highlights the importance of standardized documentation and conceptual clarity in AI validation, ensuring that systems remain transparent and accountable.
Aimed at researchers, industry professionals, and policymakers, this resource provides insights into AI governance and reliability. By integrating perspectives from applied ontology, epistemology, and AI assessment, it establishes a structured framework for developing robust, trustworthy, and explainable AI technologies.


Product Details

ISBN-13: 9783031892738
Publisher: Springer Nature Switzerland
Publication date: 05/16/2025
Series: Lecture Notes in Networks and Systems , #1375
Pages: 193
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

Synopsis of core concepts for explainable AI-ready data and models.- Conceptualizing validation systems for explainable AI A design approach.- Balancing performance and transparency.- Explainable AI for battery health monitoring.- A minimalistic definition of XAI explanations.- A comparative analysis of deep learning architectures and explainable AI.- Conclusion.

From the B&N Reads Blog

Customer Reviews