Differential Equations / Edition 4

Differential Equations / Edition 4

2.5 2
by Paul Blanchard, Robert L. Devaney, Glen R. Hall
     
 

View All Available Formats & Editions

ISBN-10: 0495561983

ISBN-13: 9780495561989

Pub. Date: 03/11/2011

Publisher: Cengage Learning

Incorporating an innovative modeling approach, this book for a one-semester differential equations course emphasizes conceptual understanding to help users relate information taught in the classroom to real-world experiences. Certain models reappear throughout the book as running themes to synthesize different concepts from multiple angles, and a dynamical systems

Overview

Incorporating an innovative modeling approach, this book for a one-semester differential equations course emphasizes conceptual understanding to help users relate information taught in the classroom to real-world experiences. Certain models reappear throughout the book as running themes to synthesize different concepts from multiple angles, and a dynamical systems focus emphasizes predicting the long-term behavior of these recurring models. Users will discover how to identify and harness the mathematics they will use in their careers, and apply it effectively outside the classroom.

Product Details

ISBN-13:
9780495561989
Publisher:
Cengage Learning
Publication date:
03/11/2011
Pages:
864
Product dimensions:
7.44(w) x 9.69(h) x 0.79(d)

Table of Contents

1. FIRST-ORDER DIFFERENTIAL EQUATIONS. Modeling via Differential Equations. Analytic Technique: Separation of Variables. Qualitative Technique: Slope Fields. Numerical Technique: Euler's Method. Existence and Uniqueness of Solutions. Equilibria and the Phase Line. Bifurcations. Linear Equations. Integrating Factors for Linear Equations. 2. FIRST-ORDER SYSTEMS. Modeling via Systems. The Geometry of Systems. Analytic Methods for Special Systems. Euler's Method for Systems. The Lorenz Equations. 3. LINEAR SYSTEMS. Properties of Linear Systems and the Linearity Principle. Straight-Line Solutions. Phase Planes for Linear Systems with Real Eigenvalues. Complex Eigenvalues. Special Cases: Repeated and Zero Eigenvalues. Second-Order Linear Equations. The Trace-Determinant Plane. Linear Systems in Three Dimensions. 4. FORCING AND RESONANCE. Forced Harmonic Oscillators. Sinusoidal Forcing. Undamped Forcing and Resonance. Amplitude and Phase of the Steady State. The Tacoma Narrows Bridge. 5. NONLINEAR SYSTEMS. Equilibrium Point Analysis. Qualitative Analysis. Hamiltonian Systems. Dissipative Systems. Nonlinear Systems in Three Dimensions. Periodic Forcing of Nonlinear Systems and Chaos. 6. LAPLACE TRANSFORMS. Laplace Transforms. Discontinuous Functions. Second-Order Equations. Delta Functions and Impulse Forcing. Convolutions. The Qualitative Theory of Laplace Transforms. 7. NUMERICAL METHODS. Numerical Error in Euler's Method. Improving Euler's Method. The Runge-Kutta Method. The Effects of Finite Arithmetic. 8. DISCRETE DYNAMICAL SYSTEMS. The Discrete Logistic Equation. Fixed Points and Periodic Points. Bifurcations. Chaos. Chaos in the Lorenz System. APPENDICES. A. Changing Variables. B. The Ultimate Guess. C. Complex Numbers and Euler's Formula.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >

Differential Equations 2.5 out of 5 based on 0 ratings. 2 reviews.
Anonymous More than 1 year ago
I hate this math book. Don't get me wrong! It taught the material, but it wanted to be read like a book which made it rather confusing and hard to understand/find examples of what you were suppose to be doing.
Anonymous 6 months ago
It's one of the hardest differential equations books i've used. The format that's written is just like a normal book. Words everywhere and very few examples. Good luck if you need it for a class.