Differential Forms and Applications / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$48.17
Used and New from Other Sellers
Used and New from Other Sellers
from $43.20
Usually ships in 1-2 business days
(Save 27%)
Other sellers (Paperback)
  • All (7) from $43.20   
  • New (6) from $43.20   
  • Used (1) from $75.91   

Overview

An application of differential forms for the study of some local and global aspects of the differential geometry of surfaces. Differential forms are introduced in a simple way that will make them attractive to "users" of mathematics. A brief and elementary introduction to differentiable manifolds is given so that the main theorem, namely Stokes' theorem, can be presented in its natural setting. The applications consist in developing the method of moving frames expounded by E. Cartan to study the local differential geometry of immersed surfaces in R3 as well as the intrinsic geometry of surfaces. This is then collated in the last chapter to present Chern's proof of the Gauss-Bonnet theorem for compact surfaces.

Read More Show Less

Editorial Reviews

From the Publisher

M.P. Do Carmo

Differential Forms and Applications

"This book treats differential forms and uses them to study some local and global aspects of differential geometry of surfaces. Each chapter is followed by interesting exercises. Thus, this is an ideal book for a one-semester course."—ACTA SCIENTIARUM MATHEMATICARUM

Read More Show Less

Product Details

  • ISBN-13: 9783540576181
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 12/29/2000
  • Series: Universitext Series
  • Edition description: 1st ed. 1994. Corr. 2nd printing 1998
  • Edition number: 1
  • Pages: 118
  • Product dimensions: 9.21 (w) x 6.14 (h) x 0.30 (d)

Table of Contents

1. Differential Forms in Rn.- 2. Line Integrals.- 3. Differentiable Manifolds.- 4. Integration on Manifolds; Stokes Theorem and Poincaré’s Lemma.- 1. Integration of Differential Forms.- 2. Stokes Theorem.- 3. Poincaré’s Lemma.- 5. Differential Geometry of Surfaces.- 1. The Structure Equations of Rn.- 2. Surfaces in R3.- 3. Intrinsic Geometry of Surfaces.- 6. The Theorem of Gauss-Bonnet and the Theorem of Morse.- 1. The Theorem of Gauss-Bonnet.- 2. The Theorem of Morse.- References.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)