Digital Control of Dynamic Systems / Edition 3

Digital Control of Dynamic Systems / Edition 3

by Gene F. Franklin, J. David Powell, Michael L. Workman
     
 

View All Available Formats & Editions

ISBN-10: 0201820544

ISBN-13: 9780201820546

Pub. Date: 12/29/1997

Publisher: Prentice Hall Professional Technical Reference

This well-respected, market-leading text discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude. Both classical and modern control methods are described and applied to

Overview

This well-respected, market-leading text discusses the use of digital computers in the real-time control of dynamic systems. The emphasis is on the design of digital controls that achieve good dynamic response and small errors while using signals that are sampled in time and quantized in amplitude. Both classical and modern control methods are described and applied to illustrative examples. The strengths and limitations of each method are explored to help the reader develop solid designs with the least effort. Two new chapters have been added to the third edition offering a review of feedback control systems and an overview of digital control systems. Updated to be fully compatible with MATLAB versions 4 and 5, the text thoroughly integrates MATLAB statements and problems to offer readers a complete design picture. The new edition contains up-to-date material on state-space design and twice as many end-of-chapter problems to give students more opportunities to practice the material.

Product Details

ISBN-13:
9780201820546
Publisher:
Prentice Hall Professional Technical Reference
Publication date:
12/29/1997
Edition description:
REV
Pages:
768
Product dimensions:
7.62(w) x 9.55(h) x 1.37(d)

Table of Contents

Preface xix
1 Introduction
1(10)
1.1 Problem Definition
1(4)
1.2 Overview of Design Approach
5(2)
1.3 Computer-Aided Design
7(1)
1.4 Suggestions for Further Reading
7(1)
1.5 Summary
8(1)
1.6 Problems
8(3)
2 Review of Continuous Control
11(46)
2.1 Dynamic Response
11(11)
2.1.1 Differential Equations
12(1)
2.1.2 Laplace Transforms and Transfer Functions
12(2)
2.1.3 Output Time Histories
14(1)
2.1.4 The Final Value Theorem
15(1)
2.1.5 Block Diagrams
15(1)
2.1.6 Response versus Pole Locations
16(4)
2.1.7 Time-Domain Specifications
20(2)
2.2 Basic Properties of Feedback
22(2)
2.2.1 Stability
22(1)
2.2.2 Steady-State Errors
23(1)
2.2.3 PID Control
24(1)
2.3 Root Locus
24(7)
2.3.1 Problem Definition
25(1)
2.3.2 Root Locus Drawing Rules
26(2)
2.3.3 Computer-Aided Loci
28(3)
2.4 Frequency Response Design
31(8)
2.4.1 Specifications
32(2)
2.4.2 Bode Plot Techniques
34(1)
2.4.3 Steady-State Errors
35(1)
2.4.4 Stability Margins
36(1)
2.4.5 Bode's Gain-Phase Relationship
37(1)
2.4.6 Design
38(1)
2.5 Compensation
39(2)
2.6 State-Space Design
41(9)
2.6.1 Control Law
42(4)
2.6.2 Estimator Design
46(2)
2.6.3 Compensation: Combined Control and Estimation
48(1)
2.6.4 Reference Input
48(1)
2.6.5 Integral Control
49(1)
2.7 Summary
50(2)
2.8 Problems
52(5)
3 Introductory Digital Control
57(16)
3.1 Digitization
58(5)
3.2 Effect of Sampling
63(3)
3.3 PID Control
66(2)
3.4 Summary
68(1)
3.5 Problems
69(4)
4 Discrete Systems Analysis
73(82)
4.1 Linear Difference Equations
73(5)
4.2 The Discrete Transfer Function
78(18)
4.2.1 The z-Transform
79(1)
4.2.2 The Transfer Function
80(2)
4.2.3 Block Diagrams and State-Variable Descriptions
82(8)
4.2.4 Relation of Transfer Function to Pulse Response
90(3)
4.2.5 External Stability
93(3)
4.3 Discrete Models of Sampled-Data Systems
96(23)
4.3.1 Using the z-Transform
96(3)
4.3.2 (*)Continuous Time Delay
99(2)
4.3.3 State-Space Form
101(9)
4.3.4 (*)State-Space Models for Systems with Delay
110(4)
4.3.5 (*)Numerical Considerations in Computing XXX and XXX
114(3)
4.3.6 (*)Nonlinear Models
117(2)
4.4 Signal Analysis and Dynamic Response
119(12)
4.4.1 The Unit Pulse
120(1)
4.4.2 The Unit Step
120(1)
4.4.3 Exponential
121(1)
4.4.4 General Sinusoid
122(3)
4.4.5 Correspondence with Continuous Signals
125(3)
4.4.6 Step Response
128(3)
4.5 Frequency Response
131(6)
4.5.1 (*)The Discrete Fourier Transform (DFT)
134(3)
4.6 Properties of the z-Transform
137(11)
4.6.1 Essential Properties
137(5)
4.6.2 (*)Convergence of z-Transform
142(4)
4.6.3 (*)Another Derivation of the Transfer Function
146(2)
4.7 Summary
148(1)
4.8 Problems
149(6)
5 Sampled-Data Systems
155(32)
5.1 Analysis of the Sample and Hold
156(4)
5.2 Spectrum of a Sampled Signal
160(4)
5.3 Data Extrapolation
164(6)
5.4 Block-Diagram Analysis of Sampled-Data Systems
170(10)
5.5 Calculating the System Output Between Samples: The Ripple
180(2)
5.6 Summary
182(1)
5.7 Problems
183(3)
5.8 Appendix
186(1)
6 Discrete Equivalents
187(24)
6.1 Design of Discrete Equivalents via Numerical Integration
189(11)
6.2 Zero-Pole Matching Equivalents
200(2)
6.3 Hold Equivalents
202(6)
6.3.1 Zero-Order Hold Equivalent
203(1)
6.3.2 A Non-Causal First-Order-Hold Equivalent: The Triangle-Hold Equivalent
204(4)
6.4 Summary
208(1)
6.5 Problems
209(2)
7 Design Using Transform Techniques
211(68)
7.1 System Specifications
212(2)
7.2 Design by Emulation
214(8)
7.2.1 Discrete Equivalent Controllers
215(3)
7.2.2 Evaluation of the Design
218(4)
7.3 Direct Design by Root Locus in the z-Plane
222(12)
7.3.1 z-Plane Specifications
222(5)
7.3.2 The Discrete Root Locus
227(7)
7.4 Frequency Response Methods
234(30)
7.4.1 Nyquist Stability Criterion
238(5)
7.4.2 Design Specifications in the Frequency Domain
243(16)
7.4.3 Low Frequency Gains and Error Coefficients
259(1)
7.4.4 Compensator Design
260(4)
7.5 Direct Design Method of Ragazzini
264(5)
7.6 Summary
269(1)
7.7 Problems
270(9)
8 Design Using State-Space Methods
279(80)
8.1 Control Law Design
280(9)
8.1.1 Pole Placement
282(3)
8.1.2 Controllability
285(1)
8.1.3 Pole Placement Using CACSD
286(3)
8.2 Estimator Design
289(13)
8.2.1 Prediction Estimators
290(3)
8.2.2 Observability
293(1)
8.2.3 Pole Placement Using CACSD
294(1)
8.2.4 Current Estimators
295(4)
8.2.5 Reduced-Order Estimators
299(3)
8.3 Regulator Design: Combined Control Law and Estimator
302(8)
8.3.1 The Separation Principle
302(6)
8.3.2 Guidelines for Pole Placement
308(2)
8.4 Introduction of the Reference Input
310(12)
8.4.1 Reference Inputs for Full-State Feedback
310(4)
8.4.2 Reference Inputs with Estimators: The State-Command Structure
314(3)
8.4.3 Output Error Command
317(2)
8.4.4 A Comparison of the Estimator Structure and Classical Methods
319(3)
8.5 Integral Control and Disturbance Estimation
322(15)
8.5.1 Integral Control by State Augmentation
323(5)
8.5.2 Disturbance Estimation
328(9)
8.6 Effect of Delays
337(8)
8.6.1 Sensor Delays
338(3)
8.6.2 Actuator Delays
341(4)
8.7 (*)Controllability and Observability
345(6)
8.8 Summary
351(1)
8.9 Problems
352(7)
9 Multivariable and Optimal Control
359(66)
9.1 Decoupling
360(4)
9.2 Time-Varying Optimal Control
364(7)
9.3 LQR Steady-State Optimal Control
371(11)
9.3.1 Reciprocal Root Properties
372(1)
9.3.2 Symmetric Root Locus
373(1)
9.3.3 Eigenvector Decomposition
374(5)
9.3.4 Cost Equivalents
379(1)
9.3.5 Emulation by Equivalent Cost
380(2)
9.4 Optimal Estimation
382(18)
9.4.1 Least-Squares Estimation
383(6)
9.4.2 The Kalman Filter
389(5)
9.4.3 Steady-State Optimal Estimation
394(2)
9.4.4 Noise Matrices and Discrete Equivalents
396(4)
9.5 Multivariable Control Design
400(19)
9.5.1 Selection of Weighting Matrices XXX(1) and XXX(2)
400(1)
9.5.2 Pincer Procedure
401(2)
9.5.3 Paper-Machine Design Example
403(4)
9.5.4 Magnetic-Tape-Drive Design Example
407(12)
9.6 Summary
419(1)
9.7 Problems
420(5)
10 Quantization Effects
425(24)
10.1 Analysis of Round-Off Error
426(11)
10.2 Effects of Parameter Round-Off
437(3)
10.3 Limit Cycles and Dither
440(5)
10.4 Summary
445(1)
10.5 Problems
445(4)
11 Sample Rate Selection
449(30)
11.1 The Sampling Theorem's Limit
450(1)
11.2 Time Response and Smoothness
451(3)
11.3 Errors Due to Random Plant Disturbances
454(7)
11.4 Sensitivity to Parameter Variations
461(4)
11.5 Measurement Noise and Antialiasing Filters
465(4)
11.6 Multirate Sampling
469(5)
11.7 Summary
474(2)
11.8 Problems
476(3)
12 System Identification
479(64)
12.1 Defining the Model Set for Linear Systems
481(3)
12.2 Identification of Nonparametric Models
484(11)
12.3 Models and Criteria for Parametric Identification
495(7)
12.3.1 Parameter Selection
496(2)
12.3.2 Error Definition
498(4)
12.4 Deterministic Estimation
502(8)
12.4.1 Least Squares
503(3)
12.4.2 Recursive Least Squares
506(4)
12.5 Stochastic Least Squares
510(11)
12.6 Maximum Likelihood
521(5)
12.7 Numerical Search for the Maximum-Likelihood Estimate
526(9)
12.8 Subspace Identification Methods
535(3)
12.9 Summary
538(1)
12.10 Problems
539(4)
13 Nonlinear Control
543(106)
13.1 Analysis Techniques
544(38)
13.1.1 Simulation
545(5)
13.1.2 Linearization
550(9)
13.1.3 Describing Functions
559(14)
13.1.4 Equivalent Gains
573(4)
13.1.5 Circle Criterion
577(2)
13.1.6 Lyapunov's Second Method
579(3)
13.2 Nonlinear Control Structures: Design
582(53)
13.2.1 Large Signal Linearization: Inverse Nonlinearities
582(17)
13.2.2 Time-Optimal Servomechanisms
599(12)
13.2.3 Extended PTOS for Flexible Structures
611(4)
13.2.4 Introduction to Adaptive Control
615(20)
13.3 Design with Nonlinear Cost Functions
635(7)
13.3.1 Random Neighborhood Search
635(7)
13.4 Summary
642(1)
13.5 Problems
643(6)
14 Design of a Disk Drive Servo: A Case Study
649(40)
14.1 Overview of Disk Drives
650(5)
14.1.1 High Performance Disk Drive Servo Profile
652(2)
14.1.2 The Disk-Drive Servo
654(1)
14.2 Components and Models
655(11)
14.2.1 Voice Coil Motors
655(3)
14.2.2 Shorted Turn
658(1)
14.2.3 Power Amplifier Saturation
659(1)
14.2.4 Actuator and HDA Dynamics
660(3)
14.2.5 Position Measurement Sensor
663(1)
14.2.6 Runout
664(2)
14.3 Design Specifications
666(4)
14.3.1 Plant Parameters for Case Study Design
667(2)
14.3.2 Goals and Objectives
669(1)
14.4 Disk Servo Design
670(16)
14.4.1 Design of the Linear Response
671(3)
14.4.2 Design by Random Numerical Search
674(4)
14.4.3 Time-Domain Response of XPTOS Structure
678(5)
14.4.4 Implementation Considerations
683(3)
14.5 Summary
686(1)
14.6 Problems
687(2)
Appendix A Examples
689(12)
A.1 Single-Axis Satellite Attitude Control
689(2)
A.2 A Servomechanism for Antenna Azimuth Control
691(3)
A.3 Temperature Control of Fluid in a Tank
694(3)
A.4 Control Through a Flexible Structure
697(2)
A.5 Control of a Pressurized Flow Box
699(2)
Appendix B Tables
701(4)
B.1 Properties of z-Transforms
701(1)
B.2 Table of z-Transforms
702(3)
Appendix C A Few Results from Matrix Analysis
705(8)
C.1 Determinants and the Matrix Inverse
705(2)
C.2 Eigenvalues and Eigenvectors
707(2)
C.3 Similarity Transformations
709(2)
C.4 The Cayley-Hamilton Theorem
711(2)
Appendix D Summary of Facts from the Theory of Probability and Stochastic Processes
713(12)
D.1 Random Variables
713(2)
D.2 Expectation
715(2)
D.3 More Than One Random Variable
717(2)
D.4 Stochastic Processes
719(6)
Appendix E MATLAB Functions
725(2)
Appendix F Differences Between MATLAB v5 and v4
727(4)
F.1 System Specification
727(2)
F.2 Continuous to Discrete Conversion
729(1)
F.3 Optimal Estimation
730(1)
References 731(6)
Index 737

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >