Digital Image Processing / Edition 3

Digital Image Processing / Edition 3

3.0 3
by Rafael C. Gonzalez, Richard E. Woods, Richard E. Woods
     
 

THE leader in the field for more than twenty years, this introduction to basic concepts and methodologies for digital image processing continues its cutting-edge focus on contemporary developments in all mainstream areas of image processing. Completely self-contained, heavily illustrated, and mathematically accessible, it has a scope ofSee more details below

Overview

THE leader in the field for more than twenty years, this introduction to basic concepts and methodologies for digital image processing continues its cutting-edge focus on contemporary developments in all mainstream areas of image processing. Completely self-contained, heavily illustrated, and mathematically accessible, it has a scope of application that is not limited to the solution of specialized problems. Digital Image Fundamentals. Image Enhancement in the Spatial Domain. Image Enhancement in the Frequency Domain. Image Restoration. Color Image Processing. Wavelets and Multiresolution Processing. Image Compression. Morphological Image Processing. Image Segmentation. Representation and Description. Object Recognition. For technicians interested in the fundamentals and contemporary applications of digital imaging processing

Product Details

ISBN-13:
9780131687288
Publisher:
Prentice Hall
Publication date:
09/04/2007
Series:
Alternative eText Formats Series
Edition description:
New Edition
Pages:
976
Sales rank:
755,407
Product dimensions:
6.60(w) x 9.40(h) x 1.50(d)

Table of Contents

DRAFT

Chapters end with a Summary, References and Further Reading, and Problems.

1. Introduction.

What Is Digital Image Processing? The Origins of Digital Image Processing. Examples of Fields that Use Digital Image Processing. Fundamental Steps in Digital Image Processing. Components of an Image Processing System.

2. Digital Image Fundamentals.

Elements of Visual Perception. Light and the Electromagnetic Spectrum. Image Sensing and Acquisition. Image Sampling and Quantization. Some Basic Relationships Between Pixels. Linear and Nonlinear Operations.

3. Image Enhancement in the Spatial Domain.

Background. Some Basic Gray Level Transformations. Histogram Processing. Enhancement Using Arithmetic/Logic Operations. Basics of Spatial Filtering. Smoothing Spatial Filters. Sharpening Spatial Filters. Combining Spatial Enhancement Methods.

4. Image Enhancement in the Frequency Domain.

Background. Introduction to the Fourier Transform and the Frequency Domain. Smoothing Frequency-Domain Filters. Sharpening Frequency Domain Filters. Homomorphic Filtering. Implementation.

5. Image Restoration.

A Model of the Image Degradation/Restoration Process. Noise Models. Restoration in the Presence of Noise Only-Spatial Filtering. Periodic Noise Reduction by Frequency Domain Filtering. Linear, Position-Invariant Degradations. Estimating the Degradation Function. Inverse Filtering. Minimum Mean Square Error (Wiener) Filtering. Constrained Least Squares Filtering. Geometric Mean Filter. Geometric Transformations.

6. Color Image Processing.

Color Fundamentals. Color Models. Pseudocolor Image Processing. Basics of Full-Color Image Processing. Color Transformations. Smoothing and Sharpening. Color Segmentation. Noise in Color Images. Color Image Compression.

7. Wavelets and Multiresolution Processing.

Background. Multiresolution Expansions. Wavelet Transforms in One Dimension. The Fast Wavelet Transform. Wavelet Transforms in Two Dimensions. Wavelet Packets.

8. Image Compression.

Fundamentals. Image Compression Models. Elements of Information Theory. Error-Free Compression. Lossy Compression. Image Compression Standards.

9. Morphological Image Processing.

Preliminaries. Dilation and Erosion. Opening and Closing. The Hit-or-Miss Transformation. Some Basic Morphological Algorithms. Extensions to Gray-Scale Images.

10. Image Segmentation.

Detection of Discontinuities. Edge Linking and Boundary Detection. Thresholding. Region-Based Segmentation. Segmentation by Morphological Watersheds. The Use of Motion in Segmentation.

11. Representation and Description.

Representation. Boundary Descriptors. Regional Descriptors. Use of Principal Components for Description. Relational Descriptors.

12. Object Recognition.

Patterns and Pattern Classes. Recognition Based on Decision-Theoretic Methods. Structural Methods.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >