×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Dilute III-V Nitride Semiconductors and Material Systems: Physics and Technology / Edition 1
     

Dilute III-V Nitride Semiconductors and Material Systems: Physics and Technology / Edition 1

by Ayse Erol
 

See All Formats & Editions

ISBN-10: 3540745289

ISBN-13: 9783540745280

Pub. Date: 03/11/2008

Publisher: Springer Berlin Heidelberg

A major current challenge for semiconductor devices is to develop materials for the next generation of optical communication systems and solar power conversion applications. Recently, extensive research has revealed that an introduction of only a few percentages of nitrogen into III-V semiconductor lattice leads to a dramatic reduction of the band gap. This

Overview

A major current challenge for semiconductor devices is to develop materials for the next generation of optical communication systems and solar power conversion applications. Recently, extensive research has revealed that an introduction of only a few percentages of nitrogen into III-V semiconductor lattice leads to a dramatic reduction of the band gap. This discovery has opened the possibility of using these material systems for applications ranging from lasers to solar cells. "Physics and Technology of Dilute III-V Nitride Semiconductors and Novel Dilute Nitride Material Systems" reviews the current status of research and development in dilute III-V nitrides, with 24 chapters from prominent research groups covering recent progress in growth techniques, experimental characterization of band structure, defects carrier transport, transport properties, dynamic behavior of N atoms, device applications, modeling of device design, novel optoelectronic integrated circuits, and novel nitrogen containing III-V materials.

Product Details

ISBN-13:
9783540745280
Publisher:
Springer Berlin Heidelberg
Publication date:
03/11/2008
Series:
Springer Series in Materials Science , #105
Edition description:
2008
Pages:
592
Product dimensions:
6.30(w) x 9.40(h) x 1.10(d)

Related Subjects

Table of Contents


Energetic Beam Synthesis of Dilute Nitrides and Related Alloys   K.M. Yu   M.A. Scarpulla   W. Shan   J. Wu   J.W. Beeman   J. Jasinski   Z. Liliental-Weber   O.D. Dubon   W. Walukiewicz     1
Introduction     1
Ion Beam Synthesis of Dilute Nitrides     3
Ion Implantation and Pulsed-Laser Melting     8
Synthesis of Dilute Nitrides by Ion Implantation and Pulsed-Laser Melting     10
Maximum Carrier Concentration and Mutual Passivation     17
Synthesis of Dilute II-VI Oxides by Ion Implantation and Pulsed-Laser Melting     20
Photovoltaic Applications of Highly Mismatched Alloys     26
Conclusions     29
References     30
Impact of Nitrogen Ion Density on the Optical and Structural Properties of MBE Grown GaInNAs/GaAs (100) and (111)B Quantum Wells   J. Miguel-Sanchez   A. Guzman   A. Hierro   E. Munoz   U. Jahn   A. Trampert     35
Introduction     36
Overview     36
Material Properties, Nitrogen Plasmas, and (111)B     36
Experimental Setup     37
Plasma Characterization     38
Basic Characterization     38
The Modified Langmuir Probe Method     40
Application of Magnetic Fields to Nitrogen Plasmas     44
Minimizing the Impact of the Ions     45
The Role of Ions on GaInNAs/GaAs (111)B QWs     47
The Role of Ions on GaInNAs/GaAs (100) QWs     50
Optical Characterization     51
Structural Characterization     54
Conclusions     60
References     61
Electronic Band Structure of Highly Mismatched Semiconductor Alloys   W. Walukiewicz   K. Alberi   J. Wu   W. Shan   K.M. Yu   J.W. Ager III     65
Introduction     65
Localized Impurities     66
The Band Anticrossing Model     67
Experimental Investigation of Dilute III-N-V Alloys     72
Interband Transitions in Dilute Nitrides     73
Electronic Properties of Dilute Nitrides     80
Valence Band Anticrossing     82
Conclusions     86
References     87
Electronic Structure of GaN[subscript x]As[subscript 1-x] Under Pressure   I. Gorczyca   P. Boguslawski   A. Svane   N.E. Christensen     91
Introduction      91
Methodology     93
Bandgap Adjustment     95
Accuracy of the Supercell Method     97
Group-Theoretical Discussion of Electronic States     97
Features of the GaN[subscript x]As[subscript 1-x] Band Structures     98
Effects of Lattice Relaxation     99
Composition Dependence of the Bandgap     100
Optical Transitions to E[subscript -] and E[subscript +]     102
Effects of Hydrostatic Pressure     105
Discussion of the Origin of the E[subscript +] Edge     108
Conduction Band Mass vs. Composition, Pressure, and Wavevector     109
Summary     116
References     117
Experimental Studies of GaInNAs Conduction Band Structure   C. Skierbiszewski     123
Introduction     123
GaInNAs Electron Effective Mass and Conduction Band Dispersion     125
Effective Mass Determination     125
Giant Nonparabolicity of the GaInNAs Conduction Band     129
Effective Mass at the Bottom of the Conduction Band     131
Pressure Dependence of the Effective Mass for k [sim] 0     137
Interband Absorption of Free-Standing Epitaxial Layers     139
Dielectric Function and the Critical Point Transitions      142
Effective g*-Factors for Electrons and Holes     146
Effective g*-Factor for the E[subscript -] Conduction Band     151
Effective g*-Factors for the E[subscript +] Conduction Band and the Valence Bands     154
Electron Effective Mass at the Bottom of the E[subscript -] Band     155
Conclusions     157
References     158
Electromodulation Spectroscopy of GaInNAsSb/GaAs Quantum Wells: The Conduction Band Offset and the Electron Effective Mass Issues   J. Misiewicz   R. Kudrawiec   M. Gladysiewicz   J.S. Harris     163
Introduction     163
Experimental Background     164
Theoretical Approach     167
Results and Discussion     171
Identification of Contacless Electroreflectance Resonances     171
Conduction Band Offset and Electron Effective Mass Determination     172
Influence of Remaining Parameters and Possible Errors     175
Summary and Outlook     176
References     177
The Effects of Nitrogen Incorporation on Photogenerated Carrier Dynamics in Dilute Nitrides   S. Mazzucato   R.J. Potter     181
Introduction     181
Exciton Localisation     183
Localisation in Dilute Nitrides     184
Photoluminescence Lineshape and S-Shape Temperature Dependence     184
Nearest Neighbour Configurations in Dilute Nitrides     188
Time Resolved Photoluminescence     188
Excitation Intensity Dependence     190
Reducing Localisation     191
Thermal Annealing     191
Antimony incorporation     194
Summary     194
References     195
Influence of the Growth Temperature on the Composition Fluctuations of GaInNAs/GaAs Quantum Wells   M. Herrera   D. Gonzalez   M. Hopkinson   H.Y. Liu   R. Garcia     199
Introduction     199
Experimental     201
Composition Fluctuations in GaInNAs Studied by Transmission Electron Microscopy in Diffraction Contrast     201
Spinodal Decomposition in GaInNAs     209
Increase of the Composition Fluctuations with Temperature     215
Summary and Future Trends     218
References     219
Assessing the Preferential Chemical Bonding of Nitrogen in Novel Dilute III-As-N Alloys   D.N. Talwar     223
Introduction     223
Local Vibrational Mode Spectroscopy     225
Vibrational Modes of Light Impurities in GaAs     226
Local Vibrational Mode of Nitrogen in GaAs and InAs     227
Bonding of Nitrogen in Ga[subscript 1-x]In[subscript x]N[subscript y]/xbAs[subscript 1-y] Alloys     231
Theoretical     234
Ab Initio Method     235
Green's Function Technique     235
Numerical Computations and Results     237
Discussion and Conclusion     248
References     250
The Hall Mobility in Dilute Nitrides   M.P. Vaughan   B.K. Ridley     255
Introduction     255
Non-Parabolicity in Dilute Nitrides     257
The Hall Mobility     261
The Ladder Method     263
Ladder Coefficients in a Non-Parabolic Band     268
Elastic Scattering Processes     275
Alloy Scattering     275
Other Elastic Processes     276
Results and Conclusions     279
References     280
Spin Dynamics in Dilute Nitride   X. Marie   D. Lagarde   V. Kalevich   T. Amand     283
Introduction     283
Samples and Experimental Set-Up     284
Experimental Results     285
Electron Spin Dynamics and Spin-Dependent Recombination     290
Conclusion     297
References     298
Optical and Electronic Properties of GaInNP Alloys: A New Material for Lattice Matching to GaAs   I.A. Buyanova   W.M. Chen     301
Introduction     301
Origin of Radiative Recombination     302
Compositional and Temperature Dependences of Bandgap Energies     305
Compositional Dependence     305
Temperature Dependence     307
Band Alignment in GaInNP/GaAs Heterostructures     308
PL Up-Conversion in GaInNP/GaAs Heterostructures     309
Interface-Related Emission     312
Band Offsets at the GaInNP/GaAs Interface     313
Summary     314
References     314
Properties and Laser Applications of the GaP-Based GaNAsP-Material System for Integration to Si Substrates   B. Kunert   K. Volz   W. Stolz     317
Introduction     317
Growth and Structural Properties     320
GaInNAsP Growth     320
Structural Properties of GaInNAsP/GaP     324
Optical Properties and Band Structure     330
Laser Devices     337
Summary     339
References      341
Comparison of the Electronic Band Formation and Band Structure of GaNAs and GaNP   M. Gungerich   P.J. Klar   W. Heimbrodt   G. Weiser   A. Lindsay   C. Harris   E.P. O'Reilly     343
History of Dilute-N III-V Semiconductor Alloys and Corresponding Optoelectronic Devices     344
Luminescence Characteristics of GaN[subscript x]As[subscript 1-x] and GaN[subscript x]P[subscript 1-x]     347
Electronic Density of States in GaN[subscript x]As[subscript 1-x] and GaN[subscript x]P[subscript 1-x]     351
Theory of Band Formation in Dilute Nitride Semiconductors     358
Conclusions     363
References     364
Doping, Electrical Properties and Solar Cell Application of GaInNAs   K. Volz   W. Stolz   J. Teubert   P.J. Klar   W. Heimbrodt   F. Dimroth   C. Baur   A. W. Bett     369
Introduction     369
GaInNAs Growth and Doping     371
Carrier Transport Properties     378
Hall Measurements     378
Magnetoresistance Measurements     381
Thermopower Measurements     386
Annealing Effects on Structural and Optical Properties     388
Structural Properties     388
Optical Properties     395
Solar Cell Characteristics     400
Summary     401
References     402
Elemental Devices and Circuits for Monolithic Optoelectronic-Integrated Circuit Fabricated in Dislocation-Free Si/III-V-N Alloy Layers Grown on Si Substrate   H. Yonezu     405
Introduction     405
Growth of Structural Defect-Free Si/(In)GaPN Layers on Si Substrate     406
Optical and Electrical Properties of GaPN and InGaPN     408
Monolithic Implementation of Elemental Devices for Optoelectronic-Integrated Circuits     412
Summary     416
References     417
Analysis of GaInNAs-Based Devices: Lasers and Semiconductor Optical Amplifiers   D. Alexandropoulos   M.J. Adams   J. Rorison     419
Introduction     419
Band Structure     420
General Considerations     420
Parameterization of the Band Anticrossing Model     422
Band Lineup     423
Implementation of the Band Structure Model     423
Optical Properties of GaInNAs Alloys     424
GaInNAs Material Gain     425
N-Positional Dependence of Material Gain     426
Comparison of GaInNAs and GaInAsP Material Gain     428
Differential Gain     428
Differential Refractive Index     431
Linewidth Enhancement Factor     431
Laser Design Considerations     433
Effect of In and N Composition on the Transition Wavelength     434
Effect of In and N Composition on the Optical Properties     436
GaInNAs Based Semiconductor Optical Amplifiers     439
Polarization Sensitive GaInNAs Semiconductor Optical Amplifiers     439
Polarization Insensitive GaInNAs SOAs     444
Conclusion     446
References     446
Dilute Nitride Quantum Well Lasers by Metalorganic Chemical Vapor Deposition   N. Tansu   L.J. Mawst     449
Introduction     449
Metalorganic Chemical Vapor Deposition-Grown GaIn(N)As Quantum Well     451
Lasing Characteristics of 1,200 nm GaInAs     453
Lasing Characteristics of GaInNAs Quantum Well Lasers     458
1,300 nm GaInNAs Multiple Quantum Well Lasers     463
1,300 nm GaInNAs Single Quantum Well Lasers with Higher N Content     464
1,320 nm GaInNAs Quantum Well Lasers with GaNAs Barriers     466
Comparison of Metalorganic Chemical Vapor Deposition GaInNAs with Other GaInNAs in 1,300 nm Regimes     471
Single-Mode Ridge Waveguide 1,300 nm GaInNAs Quantum Well Lasers     472
Extension of GaInNAs Quantum Well Lasers Beyond 1,320 nm     475
Temperature Analysis of the GaInNAs QW Lasers     480
Thermionic Emission Lifetime of GaInNAs Quantum Wells Lasers     485
Experimental Evidence of the Existence of Carrier Leakages     490
Extending the Emission Wavelength to 1,550 nm Regimes     495
Conclusions     496
References     497
Interdiffused GaInNAsSb Quantum Well on GaAs for 1,300-1,550 nm Diode Lasers   R.A. Arif   N. Tansu     503
Introduction     504
Design of the Interdiffused GaInAsNSb Quantum Well     505
Band Lineups of GaInNAsSb Material Systems     507
Computational Model of Sb-N Quantum Well Intermixing     508
Sb-N Interdiffusion Model     508
Ga(N)As-GaInNAs-GaIn(N) AsSb Energy Band Lineup     509
Interdiffused GaInAsSb-GaInNAs Quantum Well Structure     514
Optimization for Interdiffused GaInNAsSb Quantum Well at 1,550 nm Regime     515
Strain-Compensated Interdiffused GaInAsSb-GaNAs Quantum Well Structure     516
Experiments on the Interdiffusion of Sb- and N-Species in GaAs      518
Summary     521
References     522
Vertical Cavity Semiconductor Optical Amplifiers Based on Dilute Nitrides   S. Calvez   N. Laurand     525
Introduction     525
Device Description and Theory     526
Device Description     526
Amplification Analysis Using Rate Equations     528
Continuous-Wave Experimental Demonstrations     534
Devices     534
Amplification Characterization Setup     535
Reflective 1,300 nm GaInNAs Vertical Cavity Semiconductor Optical Amplifier in Operation     537
Optimization and Noise of 1,300 nm GaInNAs Vertical Cavity Semiconductor Optical Amplifiers     540
Tunability     543
Material Parameter Extraction     547
Gain Dynamics     550
Measurement Method and Associated Theoretical Remarks     551
Experimental Setup     552
VCSOA Dynamics Measurement     553
Extension to the 1,550 nm Band     555
Conclusion     559
References     560
Dilute Nitride Photodetector and Modulator Devices   J.B. Heroux   W.I. Wang     563
Introduction     563
GaInNAsSb Material Properties for Detector and Modulator Devices     566
Material Growth     566
Band Structure     567
p-i-n Photodetectors     570
GaInNAs:Sb Resonant Cavity-Enhanced Photodetector Operating at 1.3 [mu]m     570
Subsequent Results     574
Alternatives Devices     575
Photodetectors with Gain     576
Heterojunction Phototransistors     576
Avalanche Photodiodes     580
Modulators     581
References     584
Index     587

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews