Dimension Theory in Dynamical Systems: Contemporary Views and Applications / Edition 2

Paperback (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $19.00
Usually ships in 1-2 business days
(Save 40%)
Other sellers (Paperback)
  • All (9) from $19.00   
  • New (5) from $29.79   
  • Used (4) from $19.00   


The principles of symmetry and self-similarity structure nature's most beautiful creations. For example, they are expressed in fractals, famous for their beautiful but complicated geometric structure, which is the subject of study in dimension theory. And in dynamics the presence of invariant fractals often results in unstable "turbulent-like" motions and is associated with "chaotic" behavior.

In this book, Yakov Pesin introduces a new area of research that has recently appeared in the interface between dimension theory and the theory of dynamical systems. Focusing on invariant fractals and their influence on stochastic properties of systems, Pesin provides a comprehensive and systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes the most important accomplishments of this field.

Pesin's synthesis of these subjects of broad current research interest will be appreciated both by advanced mathematicians and by a wide range of scientists who depend upon mathematical modeling of dynamical processes.

Read More Show Less

Editorial Reviews

Provides a systematic treatment of modern dimension theory in dynamical systems, summarizes the current state of research, and describes important accomplishments in the field. Topics include the general concept of dimension, the dimension interpretation of well- known invariants of dynamical systems, formulas of dimension of some well-known hyperbolic invariant sets, mathematical analysis of dimension used in applied research, and mathematical theory of invariant multifractals. For advanced mathematicians, scientists who depend on mathematical modeling of dynamical processes, and advanced students in the theory of dynamical systems and dimension theory. Annotation c. by Book News, Inc., Portland, Or.
Read More Show Less

Product Details

  • ISBN-13: 9780226662220
  • Publisher: University of Chicago Press
  • Publication date: 12/28/1997
  • Series: Chicago Lectures in Mathematics Series
  • Edition description: 1
  • Edition number: 2
  • Pages: 311
  • Product dimensions: 6.00 (w) x 9.00 (h) x 0.70 (d)

Meet the Author

Yakov B. Pesin is professor of mathematics at Pennsylvania State University, University Park. He is the author of The General Theory of Smooth Hyperbolic Dynamical Systems and co-editor of Sinai's Moscow Seminar on Dynamical Systems.

Read More Show Less

Table of Contents

Part I: Carathéodory Dimension Characteristics 
Chapter 1. General Carathéodory Construction
1. Carathéodory Dimension of Sets
2. Carathéodory Capacity of Sets
3. Carathéodory Dimension and Capacity of Measures
4. Coincidence of Carathéodory Dimension and Carathéodory Capacity of Measures
5. Lower and Upper Bounds for Carathéodory Dimension of Sets; Carathéodory Dimension Spectrum
Chapter 2. C-Structures Associated with Metrics: Hausdorff Dimension and Box Dimension
6. Hausdorff Dimension and Box Dimension of Sets
7. Hausdorff Dimension and Box Dimension of Measures; Pointwise Dimension; Mass Distribution Principle
Chapter 3. C-Structures Associated with Metrics and Measures: Dimension Spectra
8. q-Dimension and q-Box Dimension of Sets
9. q-Dimension and q-Box Dimension of Measures
Appendix I: Hausdorff (Box) Dimension and Q-(Box) Dimension of Sets and Measures in General Metric Spaces
Chapter 4. C-Structures Associated with Dynamical Systems: Thermodynamic Formalism
10. A Modification of the General Carathéodory Construction
11. Dimensional Definition of Topological Pressure; Topological and Measure-Theoretic Entropies
12. Non-additive Thermodynamic Formalism
Appendix II: Variational Principle for Topological Pressure; Symbolic Dynamical Systems; Bowen's Equation
Appendix III: An Example of Carathéodory Structure Generated by Dynamical Systems
Part II: Applications to Dimension Theory and Dynamical Systems
Chapter 5. Dimension of Cantor-like Sets and Symbolic Dynamics
13. Moran-like Geometric Constructions with Stationary (Constant) Ratio Coefficients
14. Regular Geometric Constructions
15. Moran-like Geometric Constructions with Non-stationary Ratio Coefficients
16. Geometric Constructions with Rectangles; Non-coincidence of Box Dimension and Hausdorff Dimension of Sets
Chapter 6. Multifractal Formalism
17. Correlation Dimension
18. Dimension Spectra: Hentschel-Procaccia, Rényi, and f(alpha)-Spectra; Information Dimension
19. Multifractal Analysis of Gibbs Measures on Limit Sets of Geometric Constructions
Chapter 7. Dimension of Sets and Measures Invariant under Hyperbolic Systems
20. Hausdorff Dimension and Box Dimension of Conformal Repellers for Smooth Expanding Maps
21. Multifractal Analysis of Gibbs Measures for Smooth Conformal Expanding Maps
22. Hausdorff Dimension and Box Dimension of Basic Sets for Axiom A Diffeomrophisms
23. Hausdorff Dimension of Horseshoes and Solenoids
24. Multifractal Analysis of Equilibrium Measures on Basic Sets of Axiom A Diffeomorphisms
Appendix IV: A General Concept of Multifractal Spectra; Multifractal Rigidity
Chapter 8. Relations between Dimension, Entropy, and Lyapunov Exponents
25. Existence and Non-existence of Pointwise Dimension for Invariant Measures
26. Dimension of Measures with Non-zero Lyapunov Exponents; The Eckmann-Ruelle Conjecture
Appendix V: Some Useful Facts

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)