Discovery Science: 11th International Conference, DS 2008, Budapest, Hungary, October 13-16, 2008, Proceedings / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$100.28
Used and New from Other Sellers
Used and New from Other Sellers
from $58.87
Usually ships in 1-2 business days
(Save 45%)
Other sellers (Paperback)
  • All (9) from $58.87   
  • New (7) from $58.87   
  • Used (2) from $100.27   

Overview

This book constitutes the refereed proceedings of the 11th International Conference on Discovery Science, DS 2008, held in Budapest, Hungary, in October 2008, co-located with the 19th International Conference on Algorithmic Learning Theory, ALT 2008.

The 26 revised long papers presented together with 5 invited papers were carefully reviewed and selected from 58 submissions. The papers address all current issues in the area of development and analysis of methods for intelligent data analysis, knowledge discovery and machine learning, as well as their application to scientific knowledge discovery. The papers are organized in topical sections on learning, feature selection, associations, discovery processes, learning and chemistry, clustering, structured data, and text analysis.

Read More Show Less

Product Details

Table of Contents

Invited Papers.- On Iterative Algorithms with an Information Geometry Background.- Visual Analytics: Combining Automated Discovery with Interactive Visualizations.- Some Mathematics Behind Graph Property Testing.- Finding Total and Partial Orders from Data for Seriation.- Computational Models of Neural Representations in the Human Brain.- Learning.- Unsupervised Classifier Selection Based on Two-Sample Test.- An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics.- Learning Model Trees from Data Streams.- Empirical Asymmetric Selective Transfer in Multi-objective Decision Trees.- Ensemble-Trees: Leveraging Ensemble Power Inside Decision Trees.- A Comparison between Neural Network Methods for Learning Aggregate Functions.- Feature Selection.- Smoothed Prediction of the Onset of Tree Stem Radius Increase Based on Temperature Patterns.- Feature Selection in Taxonomies with Applications to Paleontology.- Associations.- Deduction Schemes for Association Rules.- Constructing Iceberg Lattices from Frequent Closures Using Generators.- Discovery Processes.- Learning from Each Other.- Comparative Evaluation of Two Systems for the Visual Navigation of Encyclopedia Knowledge Spaces.- A Framework for Knowledge Discovery in a Society of Agents.- Learning and Chemistry.- Active Learning for High Throughput Screening.- An Efficiently Computable Graph-Based Metric for the Classification of Small Molecules.- Mining Intervals of Graphs to Extract Characteristic Reaction Patterns.- Clustering.- Refining Pairwise Similarity Matrix for Cluster Ensemble Problem with Cluster Relations.- Input Noise Robustness and Sensitivity Analysis to Improve Large Datasets Clustering by Using the GRID.- An Integrated Graph and Probability Based Clustering Framework for Sequential Data.- Cluster Analysis in Remote Sensing Spectral Imagery through Graph Representation and Advanced SOM Visualization.- Structured Data.- Mining Unordered Distance-Constrained Embedded Subtrees.- Finding Frequent Patterns from Compressed Tree-Structured Data.- A Modeling Approach Using Multiple Graphs for Semi-Supervised Learning.- Text Analysis.- String Kernels Based on Variable-Length-Don’t-Care Patterns.- Unsupervised Spam Detection by Document Complexity Estimation.- A Probabilistic Neighbourhood Translation Approach for Non-standard Text Categorisation.

Read More Show Less

Customer Reviews

Average Rating 5
( 1 )
Rating Distribution

5 Star

(1)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Posted June 4, 2013

    I¿m loving McDonalds for fast food... MyDeals247 for the best de

    I’m loving McDonalds for fast food... MyDeals247 for the best deals;))

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)