# Discrete Mathematics for Computer Science (with Student Solutions Manual CD-ROM) / Edition 1

ISBN-10: 053449501X

ISBN-13: 9780534495015

Pub. Date: 02/01/2005

Publisher: Cengage Learning

An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems. Based on their teaching experiences, the authors offer an accessible text that emphasizes the fundamentals of discrete mathematics and its advanced topics. This text shows how to express precise ideas in clear mathematical…  See more details below

## Overview

An increasing number of computer scientists from diverse areas are using discrete mathematical structures to explain concepts and problems. Based on their teaching experiences, the authors offer an accessible text that emphasizes the fundamentals of discrete mathematics and its advanced topics. This text shows how to express precise ideas in clear mathematical language. Students discover the importance of discrete mathematics in describing computer science structures and problem solving. They also learn how mastering discrete mathematics will help them develop important reasoning skills that will continue to be useful throughout their careers.

## Product Details

ISBN-13:
9780534495015
Publisher:
Cengage Learning
Publication date:
02/01/2005
Edition description:
New Edition
Pages:
624
Product dimensions:
7.50(w) x 9.40(h) x 1.10(d)

## Related Subjects

1. SETS, PROOF TEMPLATES, AND INDUCTION. Basic Definitions. Exercises. Operations on Sets. Exercises. The Principle of Inclusion-Exclusion. Exercises. Mathematical Induction. Program Correctness. Exercises. Strong Form of Mathematical Induction. Exercises. Chapter Review. 2. FORMAL LOGIC. Introduction to Propositional Logic. Exercises. Truth and Logical Truth. Exercises. Normal Forms. Exercises. Predicates and Quantification. Exercises. Chapter Review. 3. RELATIONS. Binary Relations. Operations on Binary Relations. Exercises. Special Types of Relations. Exercises. Equivalence Relations. Exercises. Ordering Relations. Exercises. Relational Databases: An Introduction. Exercises. Chapter Review. 4. FUNCTIONS. Basic Definitions. Exercises. Operations on Functions. Sequences and Subsequences. Exercises. The Pigeon-Hole Principle. Exercises. Countable and Uncountable Sets. Exercises. Chapter Review. 5. ANALYSIS OF ALGORITHMS. Comparing Growth Rates of Functions. Exercises. Complexity of Programs. Exercises. Uncomputability. Chapter Review. 6. GRAPH THEORY. Introduction to Graph Theory. The Handshaking Problem. Paths and Cycles. Graph Isomorphism. Representation of Graphs. Exercises. Connected Graphs. The Konigsberg Bridge Problem. Exercises. Trees. Spanning Trees. Rooted Trees. Exercises. Directed Graphs. Applications: Scheduling a Meeting Facility. Finding a Cycle in a Directed Graph. Priority in Scheduling. Connectivity in Directed Graphs. Eulerian Circuits in Directed Graphs. Exercises. Chapter Review. 7. COUNTING AND COMBINATORICS. Traveling Salesperson. Counting Principles. Set Decomposition Principle. Exercises. Permutations and Combinations. Constructing the kth Permutation. Exercises. Counting with Repeated Objects. Combinatorial Identities. Pascals Triangle. Exercises. Chapter Review. 8. DISCRETE PROBABILITY. Ideas of Chance in Computer Science. Exercises. Cross Product Sample Spaces. Exercises. Independent Events and Conditional Probability. Exercises. Discrete Random Variables. Exercises. Variance, Standard Deviation, and the Law of Averages. Exercises. Chapter Review. 9. RECURRENCE RELATIONS. The Tower of Hanoi Problem. Solving First-Order Recurrence Relations. Exercises. Second-Order Recurrence Relations. Exercises. Divide-and-Conquer Paradigm. Binary Search. Merge Sort. Multiplication of n-Bit Numbers. Divide-and-Conquer Recurrence Relations. Exercises. Chapter Review.