BN.com Gift Guide

"e": The Story of a Number

Paperback (Print)
Buy Used
Buy Used from BN.com
$9.38
(Save 41%)
Item is in good condition but packaging may have signs of shelf wear/aging or torn packaging.
Condition: Used – Good details
Used and New from Other Sellers
Used and New from Other Sellers
from $3.88
Usually ships in 1-2 business days
(Save 75%)
Other sellers (Paperback)
  • All (23) from $3.88   
  • New (15) from $7.98   
  • Used (8) from $3.88   

Overview

The interest earned on a bank account, the arrangement of seeds in a sunflower, and the shape of the Gateway Arch in St. Louis are all intimately connected with the mysterious number e. In this informal and engaging history, Eli Maor portrays the curious characters and the elegant mathematics that lie behind the number. Designed for a reader with only a modest background in mathematics, this biography of e brings out that number's central importance in mathematics and illuminates a golden era in the age of science.

Read More Show Less

Editorial Reviews

New Scientist
This is a gently paced, elegantly composed book, and it will bring its readers much pleasure.... Maor has written an excellent book that should be in every public and school library.
— Ian Stewart
Nature
Maor wonderfully tells the story of e. The chronological history allows excursions into the lives of people involved with the development of this fascinating number. Maor hangs his story on a string of people stretching from Archimedes to David Hilbert. And by presenting mathematics in terms of the humans who produced it, he places the subject where it belongs—squarely in the centre of the humanities.
— Jerry P. King
Science
Maor has succeeded in writing a short, readable mathematical story. He has interspersed a variety of anecdotes, excursions, and essays to lighten the flow.... [The book] is like the voyages of Columbus as told by the first mate.
— Peter Borwein
Choice
Maor attempts to give the irrational number e its rightful standing alongside pi as a fundamental constant in science and nature; he succeeds very well.... Maor writes so that both mathematical newcomers and long-time professionals alike can thoroughly enjoy his book, learn something new, and witness the ubiquity of mathematical ideas in Western culture.
EMS Newsletter
It can be recommended to readers who want to learn about mathematics and its history, who want to be inspired and who want to understand important mathematical ideas more deeply.
New Scientist - Ian Stewart
This is a gently paced, elegantly composed book, and it will bring its readers much pleasure.... Maor has written an excellent book that should be in every public and school library.
Nature - Jerry P. King
Maor wonderfully tells the story of e. The chronological history allows excursions into the lives of people involved with the development of this fascinating number. Maor hangs his story on a string of people stretching from Archimedes to David Hilbert. And by presenting mathematics in terms of the humans who produced it, he places the subject where it belongs—squarely in the centre of the humanities.
Science - Peter Borwein
Maor has succeeded in writing a short, readable mathematical story. He has interspersed a variety of anecdotes, excursions, and essays to lighten the flow.... [The book] is like the voyages of Columbus as told by the first mate.
From the Publisher

Honorable Mention for the 1994 Award for Best Professional/Scholarly Book in Mathematics, Association of American Publishers

"This is a gently paced, elegantly composed book, and it will bring its readers much pleasure.... Maor has written an excellent book that should be in every public and school library."--Ian Stewart, New Scientist

"Maor wonderfully tells the story of e. The chronological history allows excursions into the lives of people involved with the development of this fascinating number. Maor hangs his story on a string of people stretching from Archimedes to David Hilbert. And by presenting mathematics in terms of the humans who produced it, he places the subject where it belongs--squarely in the centre of the humanities."--Jerry P. King, Nature

"Maor has succeeded in writing a short, readable mathematical story. He has interspersed a variety of anecdotes, excursions, and essays to lighten the flow.... [The book] is like the voyages of Columbus as told by the first mate."--Peter Borwein, Science

"Maor attempts to give the irrational number e its rightful standing alongside pi as a fundamental constant in science and nature; he succeeds very well.... Maor writes so that both mathematical newcomers and long-time professionals alike can thoroughly enjoy his book, learn something new, and witness the ubiquity of mathematical ideas in Western culture."--Choice

"It can be recommended to readers who want to learn about mathematics and its history, who want to be inspired and who want to understand important mathematical ideas more deeply."--EMS Newsletter

Nature
Maor wonderfully tells the story of e. The chronological history allows excursions into the lives of people involved with the development of this fascinating number. Maor hangs his story on a string of people stretching from Archimedes to David Hilbert. And by presenting mathematics in terms of the humans who produced it, he places the subject where it belongs—squarely in the centre of the humanities.
— Jerry P. King
Choice
Maor attempts to give the irrational number e its rightful standing alongside pi as a fundamental constant in science and nature; he succeeds very well.... Maor writes so that both mathematical newcomers and long-time professionals alike can thoroughly enjoy his book, learn something new, and witness the ubiquity of mathematical ideas in Western culture.
Jerry P. King
Maor wonderfully tells the story of e. The chronological history allows excursions into the lives of people involved with the development of this fascinating number. Maor hangs his story on a string of people stretching from Archimedes to David Hilbert. And by presenting mathematics in terms of the humans who produced it, he places the subject where it belongs—squarely in the centre of the humanities.
Library Journal
Everyone whose mathematical education has gone beyond elementary school is familiar with the number known as pi. Far fewer have been introduced to e, a number that is of equal importance in theoretical mathematics. Maor (mathematics, Northeastern Illinois Univ.) tries to fill this gap with this excellent book. He traces the history of mathematics from the 16th century to the present through the intriguing properties of this number. Maor says that his book is aimed at the reader with a ``modest'' mathematical background. Be warned that his definition of modest may not be yours. The text introduces and discusses logarithms, limits, calculus, differential equations, and even the theory of functions of complex variables. Not easy stuff! Nevertheless, the writing is clear and the material fascinating. Highly recommended.-- Harold D. Shane, Baruch Coll., CUNY
Read More Show Less

Product Details

  • ISBN-13: 9780691141343
  • Publisher: Princeton University Press
  • Publication date: 1/19/2009
  • Series: Princeton Science Library Series
  • Pages: 248
  • Sales rank: 391,766
  • Product dimensions: 6.10 (w) x 9.20 (h) x 0.70 (d)

Meet the Author


Eli Maor is the author of "Venus in Transit", "Trigonometric Delights", "To Infinity and Beyond", and "The Pythagorean Theorem: A 4,000-Year History" (all Princeton). He teaches the history of mathematics at Loyola University in Chicago and at the Graham School of General Education at the University of Chicago.
Read More Show Less

Read an Excerpt

e: The Story of a Number


By Eli Maor

Princeton University Press

Eli Maor
All right reserved.

ISBN: 0691033900


Chapter One


Chapter 1. John Napier, 1614

Seeing there is nothing that is so troublesome to mathematical practice, nor that doth more molest and hinder calculators, than the multiplications, divisions, square and cubical extractions of great numbers.... I began therefore to consider in my mind by what certain and ready art I might remove those hindrances.-JOHN NAPIER, Mirifici logarithmorum canonis descriptio (1614)1

Rarely in the history of science has an abstract mathematical idea been received more enthusiastically by the entire scientific community than the invention of logarithms. And one can hardly imagine a less likely person to have made that invention. His name was John Napier.2

The son of Sir Archibald Napier and his first wife, Janet Bothwell, John was born in 1550 (the exact date is unknown) at his family's estate, Merchiston Castle, near Edinburgh, Scotland. Details of his early life are sketchy. At the age of thirteen he was sent to the University of St. Andrews, where he studied religion. After a sojourn abroad he returned to his homeland in 1571 and married Elizabeth Stirling, with whom he had two children. Following his wife's death in 1579, he married Agnes Chisholm, and they had ten more children. The second son from this marriage, Robert, would later be his father's literary executor. After the death of Sir Archibald in 1608, John returned to Merchiston, where, as the eighth laird of the castle, he spent the rest of his life.3

Napier's early pursuits hardly hinted at future mathematical creativity. His main interests were in religion, or rather in religious activism. A fervent Protestant and staunch opponent of the papacy, he published his views in A Plaine Discovery of the whole Revelation of Saint John (1593), a book in which he bitterly attacked the Catholic church, claiming that the pope was the Antichrist and urging the Scottish king James VI (later to become King James I of England) to purge his house and court of all "Papists, Atheists, and Newtrals."4 He also predicted that the Day of Judgment would fall between 1688 and 1700. The book was translated into several languages and ran through twenty-one editions (ten of which appeared during his lifetime), making Napier confident that his name in history-or what little of it might be left-was secured.

Napier's interests, however, were not confined to religion. As a landowner concerned to improve his crops and cattle, he experimented with various manures and salts to fertilize the soil. In 1579 he invented a hydraulic screw for controlling the water level in coal pits. He also showed a keen interest in military affairs, no doubt being caught up in the general fear that King Philip II of Spain was about to invade England. He devised plans for building huge mirrors that could set enemy ships ablaze, reminiscent of Archimedes' plans for the defense of Syracuse eighteen hundred years earlier. He envisioned an artillery piece that could "clear a field of four miles circumference of all living creatures exceeding a foot of height," a chariot with "a moving mouth of mettle" that would "scatter destruction on all sides," and even a device for "sayling under water, with divers and other stratagems for harming of the enemyes"-all forerunners of modem military technology.5 It is not known whether any of these machines was actually built.

As often happens with men of such diverse interests, Napier became the subject of many stories. He seems to have been a quarrelsome type, often becoming involved in disputes with his neighbors and tenants. According to one story, Napier became irritated by a neighbor's pigeons, which descended on his property and ate his grain. Warned by Napier that if he would not stop the pigeons they would be caught, the neighbor contemptuously ignored the advice, saying that Napier was free to catch the pigeons if he wanted. The next day the neighbor found his pigeons lying half-dead on Napier's lawn. Napier had simply soaked his grain with a strong spirit so that the birds became drunk and could barely move. According to another story, Napier believed that one of his servants was stealing some of his belongings. He announced that his black rooster would identify the transgressor. The servants were ordered into a dark room, where each was asked to pat the rooster on its back. Unknown to the servants, Napier had coated the bird with a layer of lampblack. On leaving the room, each servant was asked to show his hands; the guilty servant, fearing to touch the rooster, turned out to have clean hands, thus betraying his guilt.6

All these activities, including Napier's fervent religious campaigns, have long since been forgotten. If Napier's name is secure in history, it is not because of his best-selling book or his mechanical ingenuity but because of an abstract mathematical idea that took him twenty years to develop: logarithms.

* * *

The sixteenth and early seventeenth centuries saw an enormous expansion of scientific knowledge in every field. Geography, physics, and astronomy, freed at last from ancient dogmas, rapidly changed man's perception of the universe. Copernicus's heliocentric system, after struggling for nearly a century against the dictums of the Church, finally began to find acceptance. Magellan's circumnavigation of the globe in 1521 heralded a new era of marine exploration that left hardly a corner of the world unvisited. In 1569 Gerhard Mercator published his celebrated new world map, an event that had a decisive impact on the art of navigation. In Italy Galileo Galilei was laying the foundations of the science of mechanics, and in Germany Johannes Kepler formulated his three laws of planetary motion, freeing astronomy once and for all from the geocentric universe of the Greeks. These developments involved an ever increasing amount of numerical data, forcing scientists to spend much of their time doing tedious numerical computations. The times called for an invention that would free scientists once and for all from this burden. Napier took up the challenge.

We have no account of how Napier first stumbled upon the idea that would ultimately result in his invention. He was well versed in trigonometry and no doubt was familiar with the formula

sin A · sin B = 1/2[cos(A - B) - cos(A + B)]

This formula, and similar ones for cos A · cos B and sin A · cos B, were known as the prosthaphaeretic rules, from the Greek word meaning "addition and subtraction." Their importance lay in the fact that the product of two trigonometric expressions such as sin A sin B could be computed by finding the sum or difference of other trigonometric expressions, in this case cos(A - B) and cos(A + B). Since it is easier to add and subtract than to multiply and divide, these formulas provide a primitive system of reduction from one arithmetic operation to another, simpler one. It was probably this idea that put Napier on the right track.

A second, more straightforward idea involved the terms of a geometric progression, a sequence of numbers with a fixed ratio between successive terms. For example, the sequence 1, 2, 4, 8, 16,... is a geometric progression with the common ratio 2. If we denote the common ratio by q, then, starting with 1, the terms of the progression are 1, q, q2, q3, and so on (note that the nth term is qn-1). Long before Napier's time, it had been noticed that there exists a simple relation between the terms of a geometric progression and the corresponding exponents, or indices, of the common ratio. The German mathematician Michael Stifel (1487-1567), in his book Arithmetica integra (1544), formulated this relation as follows: if we multiply any two terms of the progression 1, q, q2,..., the result would be the same as if we had added the corresponding exponents.7 For example, q2 · q3 = (q · q) · (q · q · q) = q · q · q · q · q = q5, a result that could have been obtained by adding the exponents 2 and 3. Similarly, dividing one term of a geometric progression by another term is equivalent to subtracting their exponents: q5/q3 = (q · q · q · q · q)/(q · q · q) = q · q = q2 = q5-3. We thus have the simple rules qm · qn = qm+n and qm/qn = qm-n.

A problem arises, however, if the exponent of the denominator is greater than that of the numerator, as in q3/q5; our rule would give us q3-5 = q-2, an expression that we have not defined. To get around this difficulty, we simply define q-n to be 1/qn, so that q3-5 = q-2 = 1/q2, in agreement with the result obtained by dividing q3 by q5 directly.8 (Note that in order to be consistent with the rule qm/qn = qm-n when m = n, we must also define q0 = 1.) With these definitions in mind, we can now extend a geometric progression indefinitely in both directions:.... q-3, q-2, q-1, q0 = 1, q, q2, q3,.... We see that each term is a power of the common ratio q, and that the exponents..., -3, -2, -1, 0, 1, 2, 3,... form an arithmetic progression (in an arithmetic progression the difference between successive terms is constant, in this case 1). This relation is the key idea behind logarithms; but whereas Stifel had in mind only integral values of the exponent, Napier's idea was to extend it to a continuous range of values.

His line of thought was this: If we could write any positive number as a power of some given, fixed number (later to be called a base), then multiplication and division of numbers would be equivalent to addition and subtraction of their exponents. Furthermore, raising a number to the nth power (that is, multiplying it by itself n times) would be equivalent to adding the exponent n times to itself-that is, to multiplying it by n-and finding the nth root of a number would be equivalent to n repeated subtractions-that is, to division by n. In short, each arithmetic operation would be reduced to the one below it in the hierarchy of operations, thereby greatly reducing the drudgery of numerical computations.

Let us illustrate how this idea works by choosing as our base the number 2. Table 1.1 shows the successive powers of 2, beginning with n = -3 and ending with n = 12. Suppose we wish to multiply 32 by 128. We look in the table for the exponents corresponding to 32 and 128 and find them to be 5 and 7, respectively. Adding these exponents gives us 12. We now reverse the process, looking for the number whose corresponding exponent is 12; this number is 4,096, the desired answer. As a second example, supppose we want to find 45. We find the exponent corresponding to 4, namely 2, and this time multiply it by 5 to get 10. We then look for the number whose exponent is 10 and find it to be 1,024. And, indeed, 45 = (22)5 = 210 = 1,024.

TABLE 1.1 Powers of 2

n -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
2n 1/8 1/4 1/2 1 2 4 8 16 32 64 128 256 512 1,024 2,048 4,096


Of course, such an elaborate scheme is unnecessary for computing strictly with integers; the method would be of practical use only if it could be used with any numbers, integers, or fractions. But for this to happen we must first fill in the large gaps between the entries of our table.

Continues...


Excerpted from e: The Story of a Number by Eli Maor Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents

Preface
1 John Napier, 1614 3
2 Recognition 11
3 Financial Matters 23
4 To the Limit, If It Exists 28
5 Forefathers of the Calculus 40
6 Prelude to Breakthrough 49
7 Squaring the Hyperbola 58
8 The Birth of a New Science 70
9 The Great Controversy 83
10 e[superscript x]: The Function That Equals its Own Derivative 98
11 e[superscript theta]: Spira Mirabilis 114
12 (e[superscript x] + e[superscript -x])/2: The Hanging Chain 140
13 e[superscript ix]: "The Most Famous of All Formulas" 153
14 e[superscript x + iy]: The Imaginary Becomes Real 164
15 But What Kind of Number Is It? 183
App. 1. Some Additional Remarks on Napier's Logarithms 195
App. 2. The Existence of lim (1 + 1/n)[superscript n] as n [approaches] [infinity] 197
App. 3. A Heuristic Derivation of the Fundamental Theorem of Calculus 200
App. 4. The Inverse Relation between lim (b[superscript h] - 1)/h = 1 and lim (1 + h)[superscript 1/h] = b as h [approaches] 0 202
App. 5. An Alternative Definition of the Logarithmic Function 203
App. 6. Two Properties of the Logarithmic Spiral 205
App. 7. Interpretation of the Parameter [phi] in the Hyperbolic Functions 208
App. 8. e to One Hundred Decimal Places 211
Bibliography 213
Index 217
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 – 3 of 5 Customer Reviews
  • Posted July 17, 2011

    more from this reviewer

    An excellent synopsis of the number e

    This book is a bit challenging for the not so mathematically inclined but still an excellent history with meaningful portrayals of the historical figures, mostly mathematicians involved in the story. Maor does an excellent job of leading the reader through derivations and problem solving. He spices the story with great quotes and biographic details. I read this book because I wanted to know more about e -- we use it in several important equations in population ecology. I was greatly rewarded by not only learning more about e, but also the place of mathematics in society, intellectual history, and the personalities and their relationships, both personal and historical. Highly recommended for the inellectually curious.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted February 9, 2011

    Great little book for anybody who likes math (even a little)

    The number e is a part of all of our lives in ways most of us never imagined. This is a very readable, non-technical book with a lot of amazing insights. Well written and engaging. If you, or your high school/college age children, have any interest in math professionally or as a hobby you really ought to read this book.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted December 4, 2009

    No text was provided for this review.

Sort by: Showing 1 – 3 of 5 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)