E = mc²: A Biography of the World's Most Famous Equation

Overview

Bodanis begins by devoting chapters to each of the equation's letters and symbols, introducing the science and scientists forming the backdrop to Einstein's discovery - from Ole Roemer's revelation that the speed of light could be measured to Michael Faraday's pioneering work on energy fields. Having demystified the equation, Bodanis explains its science and brings it to life historically, making clear the astonishing array of discoveries and consequences it made possible. It would prove to be a beacon throughout...
See more details below
Available through our Marketplace sellers.
Other sellers (Hardcover)
  • All (84) from $1.99   
  • New (4) from $4.54   
  • Used (80) from $1.99   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$4.54
Seller since 2009

Feedback rating:

(153)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

New
Hardcover New 0802713521 NEW: Packaged Carefully & Shipped Promptly. 100% Satisfaction Guaranteed!

Ships from: Berkeley, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$18.50
Seller since 2005

Feedback rating:

(27)

Condition: New
New York, NY 2000 Hard Cover First Edition, 4th Impression New in New jacket BRAND NEW COPY w/trace push to upper front corner of white boards. Intellectual history. Biography ... of the equation E=mc2, proposed by Albert Einstein (1879-1955) in a series of papers in 1905---the concept that the mass of a body is a measure of its energy content and the total internal energy, "E", of a body at rest, is equal to the product of its rest mass "m" and a suitable conversion factor to transform from units of mass to units of energy. In the famous equation, "E" is energy, "m" is mass, and "c" is the speed of light. Text, 16 chapters in 5 parts: 1, Birth; 2, Ancestors of E=mc2; 3, The Early Years; 4, Adulthood; and 5, Till the End of Time. Read more Show Less

Ships from: Berkeley, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$45.00
Seller since 2014

Feedback rating:

(181)

Condition: New
Brand new.

Ships from: acton, MA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
$45.00
Seller since 2014

Feedback rating:

(181)

Condition: New
Brand new.

Ships from: acton, MA

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
Page 1 of 1
Showing All
Close
Sort by
E=mc2: A Biography of the World's Most Famous Equation

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$10.49
BN.com price
(Save 12%)$11.99 List Price
Sending request ...

Overview

Bodanis begins by devoting chapters to each of the equation's letters and symbols, introducing the science and scientists forming the backdrop to Einstein's discovery - from Ole Roemer's revelation that the speed of light could be measured to Michael Faraday's pioneering work on energy fields. Having demystified the equation, Bodanis explains its science and brings it to life historically, making clear the astonishing array of discoveries and consequences it made possible. It would prove to be a beacon throughout the twentieth century, important to Ernest Rutherford, who discovered the structure of the atom, Enrico Fermi, who probed the nucleus, and Lise Meitner, who finally understood how atoms could be split wide open. And it has come to inform our daily lives, governing everything from the atomic bomb to a television's cathode-ray tube to the carbon dating of prehistoric paintings.
Read More Show Less

Editorial Reviews

From Barnes & Noble
Our Review
In his introduction, author David Bodanis relates the story of the genesis of this book. He was reading an interview with Cameron Diaz where the interviewer asked if there was anything else the actress wanted to know, and she said, "What does E=mc2 really mean?" Dubbed in the subtitle "The World's Most Famous Equation," E=mc2 falls into the larger category of things people feel they should comprehend. As Bodanis points out, it seems like Albert Einstein's little formula should be understandable -- after all, it only consists of five symbols! The first part of the book takes each of those five symbols in turn and explains its history. E stands for energy; = for equals; m for mass; c for the speed of light; and the superscript 2 for squared. There was a time before any of these symbols existed; even the = sign had a sputtering start. It is only in the past couple of hundred years that humanity has come to understand that energy is something to be measured and that it has the ability to change. These properties were discovered and refined by people like Michael Faraday, who in the 19th century made the connection between electricity and magnetism. Likewise, Antoine Laurent Lavoisier -- whom Bodanis characterizes as "an accountant with a soul that could soar" -- was instrumental in observing the conservation of mass. These discoveries laid the foundation for Einstein's astonishing insight that energy and mass can actually convert into each other. The speed of light (186,000 miles per second) multiplied by itself is a pretty hefty number, so it doesn't take very much mass to convert into a vast amount of energy. Bodanis continues with a concise chronology of how that knowledge was turned into history's most infamous weapon, the atomic bomb, recounting such exploits as the World War II raid to disable Germany's heavy-water plant. That same equation has been with us always, though. Long before the Manhattan Project, E=mc2 made the stars shine -- including our own star, the sun.

E=mc2 accomplishes exactly what it sets out to do. By the end, readers know what the equation is and what it does, without having to swim through a lot of other theories and equations.

--Laura Wood, Science & Nature Editor

Publishers Weekly - Publisher's Weekly
Most people know this celebrated equation has something to do with Einstein's theory of relativity, but most nonscientists don't know what it means. This very approachable yet somewhat limited work of popular science explains, and adorns with anecdote and biography, the equation and its place in history. Oxford lecturer Bodanis (The Secret Family) shows what happened to Einstein on the way to the discovery, what other scientists did to bring it about and how the equation created the atom bomb. Part Two tackles separately the components of the equation (E, =, m, c and "squared"), which means that it covers 18th- and 19th-century physics. "`E' Is for Energy" opens with Michael Faraday, whose unusual religious beliefs helped him discover that electricity and magnetism were the same force. "`m' Is for Mass" brings in French chemist Lavoisier, who established the law of conservation of matter. Bodanis then turns to Einstein's life and work. The middle third of the book covers the exploration of the atom and the making of the atom bomb; the cast of characters here includes Marie Curie, Lise Meitner and Enrico Fermi. A concluding section considers how E=mc2 powers the sun, and how our sun and all others will eventually run out of gas. Capsule biographies here include one of the engaging English astronomer Cecilia Payne, who wouldn't let institutional sexism stop her from finding the hydrogen in the sun. Bodanis's writing is accessible to the point of chattiness: he seeks, and deserves, many readers who know no physics. They'll learn a handful--more important, they'll enjoy it, and pick up a load of biographical and cultural curios along the way. 20 photos and drawings not seen by PW. (Oct.) Copyright 2000 Cahners Business Information.
Library Journal
As in his earlier books (The Secret Family; The Secret House), science writer and Oxford lecturer Bodanis truly has a gift for bringing his subject matter to life. Here he profiles the most famous equation in science history: E=mc. Each letter and symbol of Einstein's Theory of Special Relativity is explained separately, with historical information about the development of each component. Bodanis provides interesting biographical tidbits about the scientists who influenced Einstein's discovery (Ole Roemer, Michael Faraday) and put his theory to use (Ernest Rutherford, Enrico Fermi, and Lise Meitner). Then he discusses the relationship between these elements (the = in this equation) and the birth of the Nuclear Age. Bodanis includes annotated notes and suggested readings, which in themselves make good reading. Surely one of the best books of the year, this is highly recommended for all libraries.--James Olson, Northeastern Illinois Univ. Lib., Chicago Copyright 2000 Cahners Business Information.
Booknews
The equation did not emerge fully grown from Einstein's head one day in 1905, says mathematician-turned-social scientist Bodanis. He takes it apart, explaining each element, and in the process introduces key figures who previously discovered the realms of energy and mass and how they operated. Among them are Voltaire's lover Emilie du Ch<^a>telet, and Michael Faraday. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Kirkus Reviews
A readable history and explanation of the only physics equation that has taken on a life of its own in popular culture.
From the Publisher
“Bodanis’s account is exhilarating….This book filled me, once again, with delight at what numbers, together with a free-ranging intellect, can achieve. E=mc² is to be treasured because, in its small compass, it reveals so much of what makes science tick….a few more books like this and perhaps our policy makers will remember what science is about” —The Globe and Mail
Read More Show Less

Product Details

  • ISBN-13: 9780802713520
  • Publisher: Walker & Company
  • Publication date: 9/1/2000
  • Pages: 352
  • Lexile: 1170L (what's this?)
  • Product dimensions: 5.27 (w) x 8.77 (h) x 1.23 (d)

Meet the Author

David Bodanis is the author of six books, including the bestselling The Secret House. He teaches mathematical physics at Oxford and lives in London.

Read More Show Less

Read an Excerpt




Chapter One


Bern Patent Office, 1905


From THE COLLECTED PAPERS OF ALBERT EINSTEIN, VOLUME I:


    13 April 1901

    Professor Wilhelm Ostwald

    University of Leipzig

    Leipzig, Germany


    Esteemed Herr Professor!


Please forgive a father who is so bold as to turn to you, esteemed Herr Professor, in the interest of his son.
I shall start by telling you that my son Albert is 22 years old, that ... he feels profoundly unhappy with his present lack of position, and his idea that he has gone off the tracks with his career & is now out of touch gets more and more entrenched each day. In addition, he is oppressed by the thought that he is a burden on us, people of modest means....
I have taken the liberty of turning [to you] with the humble request to ... write him, if possible, a few words of encouragement, so that he might recover his joy in living and working.
If, in addition, you could secure him an Assistant's position for now or the next autumn, my gratitude would know no bounds....
I am also taking the liberty of mentioning that my son does not know anything about my unusual step.


I remain, highly esteemed Herr Professor, your devoted


    Hermann Einstein


No answer from Professor Ostwald was ever received.


The world of 1905seems distant to us now, but there were many similarities to life today. European newspapers complained that there were too many American tourists, while Americans were complaining that there were too many immigrants. The older generation everywhere complained that the young were disrespectful, while politicians in Europe and America worried about the disturbing turbulence in Russia. There were newfangled "aerobics" classes; there was a trend-setting vegetarian society, and calls for sexual freedom (which were rebuffed by traditionalists standing for family values), and much else.

    The year 1905 was also when Einstein wrote a series of papers that changed our view of the universe forever. On the surface, he seemed to have been leading a pleasant, quiet life until then. He had often been interested in physics puzzles as a child, and was now a recent university graduate, easygoing enough to have many friends. He had married a bright fellow student, Mileva, and was earning enough money from a civil service job in the patent office to spend his evenings and Sundays in pub visits, or long walks—above all, he had a great deal of time to think.

    Although his father's letter hadn't succeeded, a friend of Einstein's from the university, Marcel Grossman, had pulled the right strings to get Einstein the patent job in 1902. Grossman's help was necessary not so much because Einstein's final university grades were unusually low—through cramming with the ever-useful Grossman's notes, Einstein had just managed to reach a 4.91 average out of a possible 6, which was almost average—but because one professor, furious at Einstein for telling jokes and cutting classes, had spitefully written unacceptable references. Teachers over the years had been irritated by his lack of obedience, most notably Einstein's high school Greek grammar teacher, Joseph Degenhart, the one who has achieved immortality in the history books through insisting that "nothing would ever become of you." Later, when told it would be best if he left the school, Degenhart had explained, "Your presence in the class destroys the respect of the students."

    Outwardly Einstein appeared confident, and would joke with his friends about the way everyone in authority seemed to enjoy putting him down. The year before, in 1904, he had applied for a promotion from patent clerk third class to patent clerk second class. His supervisor, Dr. Haller, had rejected him, writing in an assessment that although Einstein had "displayed some quite good achievements," he would still have to wait "until he has become fully familiar with mechanical engineering."

    In reality, though, the lack of success was becoming serious. Einstein and his wife had given away their first child, a daughter born before they were married, and were now trying to raise the second on a patent clerk's salary. Einstein was twenty-six. He couldn't even afford the money for part-time help to let his wife go back to her studies. Was he really as wise as his adoring younger sister, Maja, had told him?

    He managed to get a few physics articles published, but they weren't especially impressive. He was always aiming for grand linkages—his very first paper, published back in 1901, had tried to show that the forces controlling the way liquid rises up in a drinking straw were similar, fundamentally, to Newton's laws of gravitation. But he could not quite manage to get these great linkages to work, and he got almost no response from other physicists. He wrote to his sister, wondering if he'd ever make it.

    Even the hours he had to keep at the patent office worked against him. By the time he got off for the day, the one science library in Bern was usually closed. How would he have a chance if he couldn't even stay up to date with the latest findings? When he did have a few free moments during the day, he would scribble on sheets he kept in one drawer of his desk—which he jokingly called his department of theoretical physics. But Haller kept a strict eye on him, and the drawer stayed closed most of the time. Einstein was slipping behind, measurably, compared to the friends he'd made at the university. He talked with his wife about quitting Bern and trying to find a job teaching high school. But even that wasn't any guarantee: he had tried it before, only four years earlier, but never managed to get a permanent post.

    And then, on what Einstein later remembered as a beautiful day in the spring of 1905, he met his best friend, Michele Besso ("I like him a great deal," Einstein wrote, "because of his sharp mind and his simplicity"), for one of their long strolls on the outskirts of the city. Often they just gossiped about life at the patent office, and music, but today Einstein was uneasy. In the past few months a great deal of what he'd been thinking about had started coming together, but there was still something Einstein felt he was very near to understanding but couldn't quite see. That night Einstein still couldn't quite grasp it, but the next day he suddenly woke up, feeling "the greatest excitement."

    It took just five or six weeks to write up a first draft of the article, filling thirty-some pages. It was the start of his theory of relativity. He sent the article to Annalen der Physik to be published, but a few weeks later, he realized that he had left something out. A three-page supplement was soon delivered to the same physics journal. He admitted to another friend that he was a little unsure how accurate the supplement was: "The idea is amusing and enticing, but whether the Lord is laughing at it and has played a trick on me—that I cannot know." But in the text itself he began, confidently: "The results of an electrodynamic investigation recently published by me in this journal lead to a very interesting conclusion, which will be derived here." And then, four paragraphs from the end of this supplement, he wrote it out.

    E=mc² had arrived in the world.

Read More Show Less

Table of Contents

Preface vii
Part 1 Birth
1 Bern Patent Office, 1905 3
Part 2 Ancestors of E=mc[superscript 2]
2 E Is for Energy 11
3 = 23
4 m Is for mass 27
5 c Is for celeritas 37
6 [characters not reproducible] 55
Part 3 The Early Years
7 Einstein and the Equation 73
8 Into the Atom 93
9 Quiet in the Midday Snow 100
Part 4 Adulthood
10 Germany's Turn 117
11 Norway 134
12 America's Turn 143
13 8:16 A.M.--Over Japan 163
Part 5 Till the End of Time
14 The Fires of the Sun 173
15 Creating the Earth 184
16 A Brahmin Lifts His Eyes Unto the Sky 195
Epilogue: What Else Einstein Did 204
Appendix Follow-Up of Other Key Participants 221
Notes 237
Guide to Further Reading 301
Acknowledgments 319
Index 325
Read More Show Less

Interviews & Essays

Exclusive Author Essay
The idea for this book dates back to when I was a schoolchild in Chicago. On a field trip, one of my classmates asked our teacher what Einstein had invented. None of the teachers knew, and that was puzzling: We all had heard that Einstein was one of the greatest minds in history. Yet what was it he had invented?

Years passed, and I studied math and physics at the University of Chicago and ultimately ended up teaching at Oxford. Yet I realized that many of my friends now were in the same position my school friends and I had been in those years before: They knew Einstein and relativity and E=mc2 were important...but they didn't know why. I realized I could write a book that would help resolve that, if I simply explained E=mc2 in terms of the people who had played a central role in that equation. Their hopes and ambitions and passions would be a "vehicle" through which I could give readers a powerful, clear explanation of Einstein's science.

To understand what the "m" is doing in the equation, I look at the life of Antoine Lavoisier, the wealthy Parisian whose life ended on the guillotine during the French Revolution; to explain the "e" in the equation, I look at Michael Faraday, a boy from the slums of London at the beginning of the 1800s who rose up to a top position at the Royal Institution (even though the mentor who brought him there ultimately turned against young Faraday at his very moment of triumph).

But the equation also applies in ordinary life, and I show E=mc2 operating in ordinary medical equipment, and even in the red-glowing exit signs in our movie theaters. Its sway stretches out into space, and in one of my favorite chapters I recount the story of Cecilia Payne, the young British woman who first understood that the sun was made out of hydrogen and that this "mass" is "pumped" through the equation to come out as the glowing "energy" that lights up our planet, and our solar system...and glows out through the galaxy, serving as a beacon to Einstein's great insight and all the individuals who were part of his great work.

--David Bodanis

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 6 Customer Reviews
  • Anonymous

    Posted January 12, 2002

    Bodanis Really Makes You Think!

    I read through the earlier reviews and I simply have to disagree with the 1 Star rating that someone had given this book. It would be my presumption that the person who assigned such a low score probably has a little more insight on the workings of E=mc2, and physics in general, than the common layperson and probably began reading with more than just a little skeptism in the first place. That said, I have nothing but words of praise for the book, and bountiful words of thanks to the author. There aren't too many books out there that tackle such an ambitious subject while maintaining perspective for whom the book was intended. I am convinced that Bodanis, like Einstein, does indeed understand the equation, but, unlike Einstein, he was able to effectively communicate just what it means to physics-outsiders without the readers walking away confused. It is my belief that Bodanis didn't write the book to attain approval from his peers, but rather wrote it in an effort to make the equation (including several interesting topics that go hand in hand with it )intelligible to people who don't spend their days in the study of science and physics. Bodanis seems to appreciate the fact that most people CAN grasp what the equation means if it is explained in such a way as to not talk over our heads. Never once did Mr. Bodanis cause me to confuse mass with weight, and since I was probably reading more intently and with less skeptism, I did not confuse the glossing over of relativity with a lack of knowledge on Bodanis' part. He clearly stated that relativity was too large of a topic to consider covering in a book about the equation, and gave a web address where interested readers could go to learn more about it. I did indeed go to the website and found not only explanations, but helpful drawings as well. While I truly appreciated this book for the little bits of history that I found to be quite fascinating, the most gratifying part was that it led to all kinds of extra thinking. Although my thoughts might not have been exactly like everyone else's, I think most people would agree that it causes one to ponder all the maybes and might have beens that preceded and proceeded the unveiling of the unimaginable power of E=mc2. Thank you, Mr. Bodanis, from one of the people for whom you intended this book.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted May 7, 2001

    Great Energy!

    Prepare to be amazed by events before and after Einstein published his energy-mass formula. This is no primer. Rather E=mc2 flies high and wide about people, places, and things that you hear about but really don't know much about. I was particularly impressed by descriptions of what went on in the sky over Hiroshima, an important narrative about the atomic bomb's inner workings. Beyond the main text, which is excellent beginning to end, appendices and notes are also quite informative.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 11, 2001

    How to make physics into a joyful adventure

    To say this book is about e=mc2, is like dismissing 'War and Peace' as a book about Russia. Yes, this is a book about the world's most famous formula, but it is told largely through lives of those crazy guys (and gals) who came up with these bizarre ideas centuries before Einstein: who invented the = sign anyway? And why does it mean one thing to a physicist and something else to the rest of us? Why did the nazis get it wrong and the Americans get it right? It is a fascinating adventure story, written with a light touch that never insults the reader. The author manages to keep his target in focus: this is the significance of e=mc2 for the rest of us. Back in college, we had science courses for nonscience majors. One such course was nicknamed 'Physics for Poets.' This book could easily form the core of that course, and keep even the most A-D-D college sophomore intrigued and humbled by it all. Read it and enjoy!

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 9, 2001

    History of E=mc2 without the maths

    Lots of historical interesting anecdotes about great scientists like Lavoisier. It offers applications of the equation in everyday life, which is great. The part about the history of the nuclear bomb is entertaining. The book offers an interesting approach quite different from the classical biography of Einstein which renders it most interesting. What I did not like is the refering notes. They are not called in the text, only refered by the page number. They provide great informations (almost a third of the book!) and are in an impractical setup. Normal footnote system would have been much better. An enjoyable reading.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 4, 2001

    No real physical insight

    In the opening, the author tells the story of a man who shared a voyage with Einstein and asked the scientist to explain relativity. After several days the man concluded that Einstein understood the topic completely. I am not convinced that Bodanis understands the topic at all. In introducing his cast of characters (Energy, '=', mass, 'c', and '^2') he plays fast and loose with fundamental concepts of math and physics. He tells stories concerning mass and energy conservation, but never really defines what mass and energy are (and in fact commits the cardinal sin of confusing mass and weight). The rest concerns itself with the effects of E=mc^2, i.e. bomb-making and radioactivity, which are interesting enough from a historical persepctive. The more fantastic implications of relativity (time & length dilation, etc.) are given a glossing-over. In fact, the author notes that many books on relativity are poorly understood because they deal so much with those topics, which I suppose is why he chooses to ignore them. The problem is that the mathematics of those effects are the source of the title equation, not the other way around. Einstein did not 'choose' c^2 to be the proportionality constant, as Bodanis implies. Nature did and Einstein was simply the first to do the math and discover the relation for the rest of us. If you read this without any real knowledge of physics, you might enjoy it, but you still won't know anything about physics. If you have taken some physics, you'll probably be frustrated at all the errors and omissions. In either case, you're probably better off reading Feynman.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted January 4, 2001

    Excellent!

    This book is very engaging and well written. It reads like a novel where you want to keep turning pages to know what happens next as the various elements of the famous formula are discovered. It brings alive many scientists and the societal influences of their time. Do read the footnote section and book references for more background information. There's great stuff in there. There's no heavy math. The Relativity concepts always involve some thinking but it's not beyond the realm of most non-technical readers.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing all of 6 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)