BN.com Gift Guide

E=mc2: A Biography of the World's Most Famous Equation [NOOK Book]

Overview


Generations have grown up knowing that the equation E=mc2 changed the shape of our world, but never understanding what it actually means, why it was so significant, and how it informs our daily lives today--governing, as it does, everything from the atomic bomb to a television's cathode ray tube to the carbon dating of prehistoric paintings. In this book, David Bodanis writes the "biography" of one of the greatest scientific discoveries in history--that the realms of energy and matter are inescapably ...
See more details below
E=mc2: A Biography of the World's Most Famous Equation

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$10.49
BN.com price
(Save 12%)$11.99 List Price

Overview


Generations have grown up knowing that the equation E=mc2 changed the shape of our world, but never understanding what it actually means, why it was so significant, and how it informs our daily lives today--governing, as it does, everything from the atomic bomb to a television's cathode ray tube to the carbon dating of prehistoric paintings. In this book, David Bodanis writes the "biography" of one of the greatest scientific discoveries in history--that the realms of energy and matter are inescapably linked--and, through his skill as a writer and teacher, he turns a seemingly impenetrable theory into a dramatic human achievement and an uncommonly good story.
Read More Show Less

Editorial Reviews

From Barnes & Noble
Our Review
In his introduction, author David Bodanis relates the story of the genesis of this book. He was reading an interview with Cameron Diaz where the interviewer asked if there was anything else the actress wanted to know, and she said, "What does E=mc2 really mean?" Dubbed in the subtitle "The World's Most Famous Equation," E=mc2 falls into the larger category of things people feel they should comprehend. As Bodanis points out, it seems like Albert Einstein's little formula should be understandable -- after all, it only consists of five symbols! The first part of the book takes each of those five symbols in turn and explains its history. E stands for energy; = for equals; m for mass; c for the speed of light; and the superscript 2 for squared. There was a time before any of these symbols existed; even the = sign had a sputtering start. It is only in the past couple of hundred years that humanity has come to understand that energy is something to be measured and that it has the ability to change. These properties were discovered and refined by people like Michael Faraday, who in the 19th century made the connection between electricity and magnetism. Likewise, Antoine Laurent Lavoisier -- whom Bodanis characterizes as "an accountant with a soul that could soar" -- was instrumental in observing the conservation of mass. These discoveries laid the foundation for Einstein's astonishing insight that energy and mass can actually convert into each other. The speed of light (186,000 miles per second) multiplied by itself is a pretty hefty number, so it doesn't take very much mass to convert into a vast amount of energy. Bodanis continues with a concise chronology of how that knowledge was turned into history's most infamous weapon, the atomic bomb, recounting such exploits as the World War II raid to disable Germany's heavy-water plant. That same equation has been with us always, though. Long before the Manhattan Project, E=mc2 made the stars shine -- including our own star, the sun.

E=mc2 accomplishes exactly what it sets out to do. By the end, readers know what the equation is and what it does, without having to swim through a lot of other theories and equations.

--Laura Wood, Science & Nature Editor

Publishers Weekly - Publisher's Weekly
Most people know this celebrated equation has something to do with Einstein's theory of relativity, but most nonscientists don't know what it means. This very approachable yet somewhat limited work of popular science explains, and adorns with anecdote and biography, the equation and its place in history. Oxford lecturer Bodanis (The Secret Family) shows what happened to Einstein on the way to the discovery, what other scientists did to bring it about and how the equation created the atom bomb. Part Two tackles separately the components of the equation (E, =, m, c and "squared"), which means that it covers 18th- and 19th-century physics. "`E' Is for Energy" opens with Michael Faraday, whose unusual religious beliefs helped him discover that electricity and magnetism were the same force. "`m' Is for Mass" brings in French chemist Lavoisier, who established the law of conservation of matter. Bodanis then turns to Einstein's life and work. The middle third of the book covers the exploration of the atom and the making of the atom bomb; the cast of characters here includes Marie Curie, Lise Meitner and Enrico Fermi. A concluding section considers how E=mc2 powers the sun, and how our sun and all others will eventually run out of gas. Capsule biographies here include one of the engaging English astronomer Cecilia Payne, who wouldn't let institutional sexism stop her from finding the hydrogen in the sun. Bodanis's writing is accessible to the point of chattiness: he seeks, and deserves, many readers who know no physics. They'll learn a handful--more important, they'll enjoy it, and pick up a load of biographical and cultural curios along the way. 20 photos and drawings not seen by PW. (Oct.) Copyright 2000 Cahners Business Information.
Library Journal
As in his earlier books (The Secret Family; The Secret House), science writer and Oxford lecturer Bodanis truly has a gift for bringing his subject matter to life. Here he profiles the most famous equation in science history: E=mc. Each letter and symbol of Einstein's Theory of Special Relativity is explained separately, with historical information about the development of each component. Bodanis provides interesting biographical tidbits about the scientists who influenced Einstein's discovery (Ole Roemer, Michael Faraday) and put his theory to use (Ernest Rutherford, Enrico Fermi, and Lise Meitner). Then he discusses the relationship between these elements (the = in this equation) and the birth of the Nuclear Age. Bodanis includes annotated notes and suggested readings, which in themselves make good reading. Surely one of the best books of the year, this is highly recommended for all libraries.--James Olson, Northeastern Illinois Univ. Lib., Chicago Copyright 2000 Cahners Business Information.
Booknews
The equation did not emerge fully grown from Einstein's head one day in 1905, says mathematician-turned-social scientist Bodanis. He takes it apart, explaining each element, and in the process introduces key figures who previously discovered the realms of energy and mass and how they operated. Among them are Voltaire's lover Emilie du Ch<^a>telet, and Michael Faraday. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Kirkus Reviews
A readable history and explanation of the only physics equation that has taken on a life of its own in popular culture.
Read More Show Less

Product Details

  • ISBN-13: 9780802718211
  • Publisher: Bloomsbury USA
  • Publication date: 5/26/2009
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 352
  • Sales rank: 223,322
  • File size: 2 MB

Meet the Author

David Bodanis designed and gave the "Intellectual Tool-kit" course lectures for many years at Oxford University in England. He is the author of several books, including The Secret Family and the best-seller The Secret House. A native of Chicago, he lives in London, England.
Read More Show Less

Read an Excerpt




Chapter One


Bern Patent Office, 1905


From THE COLLECTED PAPERS OF ALBERT EINSTEIN, VOLUME I:


    13 April 1901

    Professor Wilhelm Ostwald

    University of Leipzig

    Leipzig, Germany


    Esteemed Herr Professor!


Please forgive a father who is so bold as to turn to you, esteemed Herr Professor, in the interest of his son.
I shall start by telling you that my son Albert is 22 years old, that ... he feels profoundly unhappy with his present lack of position, and his idea that he has gone off the tracks with his career & is now out of touch gets more and more entrenched each day. In addition, he is oppressed by the thought that he is a burden on us, people of modest means....
I have taken the liberty of turning [to you] with the humble request to ... write him, if possible, a few words of encouragement, so that he might recover his joy in living and working.
If, in addition, you could secure him an Assistant's position for now or the next autumn, my gratitude would know no bounds....
I am also taking the liberty of mentioning that my son does not know anything about my unusual step.


I remain, highly esteemed Herr Professor, your devoted


    Hermann Einstein


No answer from Professor Ostwald was ever received.


The world of 1905seems distant to us now, but there were many similarities to life today. European newspapers complained that there were too many American tourists, while Americans were complaining that there were too many immigrants. The older generation everywhere complained that the young were disrespectful, while politicians in Europe and America worried about the disturbing turbulence in Russia. There were newfangled "aerobics" classes; there was a trend-setting vegetarian society, and calls for sexual freedom (which were rebuffed by traditionalists standing for family values), and much else.

    The year 1905 was also when Einstein wrote a series of papers that changed our view of the universe forever. On the surface, he seemed to have been leading a pleasant, quiet life until then. He had often been interested in physics puzzles as a child, and was now a recent university graduate, easygoing enough to have many friends. He had married a bright fellow student, Mileva, and was earning enough money from a civil service job in the patent office to spend his evenings and Sundays in pub visits, or long walks—above all, he had a great deal of time to think.

    Although his father's letter hadn't succeeded, a friend of Einstein's from the university, Marcel Grossman, had pulled the right strings to get Einstein the patent job in 1902. Grossman's help was necessary not so much because Einstein's final university grades were unusually low—through cramming with the ever-useful Grossman's notes, Einstein had just managed to reach a 4.91 average out of a possible 6, which was almost average—but because one professor, furious at Einstein for telling jokes and cutting classes, had spitefully written unacceptable references. Teachers over the years had been irritated by his lack of obedience, most notably Einstein's high school Greek grammar teacher, Joseph Degenhart, the one who has achieved immortality in the history books through insisting that "nothing would ever become of you." Later, when told it would be best if he left the school, Degenhart had explained, "Your presence in the class destroys the respect of the students."

    Outwardly Einstein appeared confident, and would joke with his friends about the way everyone in authority seemed to enjoy putting him down. The year before, in 1904, he had applied for a promotion from patent clerk third class to patent clerk second class. His supervisor, Dr. Haller, had rejected him, writing in an assessment that although Einstein had "displayed some quite good achievements," he would still have to wait "until he has become fully familiar with mechanical engineering."

    In reality, though, the lack of success was becoming serious. Einstein and his wife had given away their first child, a daughter born before they were married, and were now trying to raise the second on a patent clerk's salary. Einstein was twenty-six. He couldn't even afford the money for part-time help to let his wife go back to her studies. Was he really as wise as his adoring younger sister, Maja, had told him?

    He managed to get a few physics articles published, but they weren't especially impressive. He was always aiming for grand linkages—his very first paper, published back in 1901, had tried to show that the forces controlling the way liquid rises up in a drinking straw were similar, fundamentally, to Newton's laws of gravitation. But he could not quite manage to get these great linkages to work, and he got almost no response from other physicists. He wrote to his sister, wondering if he'd ever make it.

    Even the hours he had to keep at the patent office worked against him. By the time he got off for the day, the one science library in Bern was usually closed. How would he have a chance if he couldn't even stay up to date with the latest findings? When he did have a few free moments during the day, he would scribble on sheets he kept in one drawer of his desk—which he jokingly called his department of theoretical physics. But Haller kept a strict eye on him, and the drawer stayed closed most of the time. Einstein was slipping behind, measurably, compared to the friends he'd made at the university. He talked with his wife about quitting Bern and trying to find a job teaching high school. But even that wasn't any guarantee: he had tried it before, only four years earlier, but never managed to get a permanent post.

    And then, on what Einstein later remembered as a beautiful day in the spring of 1905, he met his best friend, Michele Besso ("I like him a great deal," Einstein wrote, "because of his sharp mind and his simplicity"), for one of their long strolls on the outskirts of the city. Often they just gossiped about life at the patent office, and music, but today Einstein was uneasy. In the past few months a great deal of what he'd been thinking about had started coming together, but there was still something Einstein felt he was very near to understanding but couldn't quite see. That night Einstein still couldn't quite grasp it, but the next day he suddenly woke up, feeling "the greatest excitement."

    It took just five or six weeks to write up a first draft of the article, filling thirty-some pages. It was the start of his theory of relativity. He sent the article to Annalen der Physik to be published, but a few weeks later, he realized that he had left something out. A three-page supplement was soon delivered to the same physics journal. He admitted to another friend that he was a little unsure how accurate the supplement was: "The idea is amusing and enticing, but whether the Lord is laughing at it and has played a trick on me—that I cannot know." But in the text itself he began, confidently: "The results of an electrodynamic investigation recently published by me in this journal lead to a very interesting conclusion, which will be derived here." And then, four paragraphs from the end of this supplement, he wrote it out.

    E=mc² had arrived in the world.

Read More Show Less

Table of Contents

Preface vii
Part 1 Birth
1 Bern Patent Office, 1905 3
Part 2 Ancestors of E=mc[superscript 2]
2 E Is for Energy 11
3 = 23
4 m Is for mass 27
5 c Is for celeritas 37
6 [characters not reproducible] 55
Part 3 The Early Years
7 Einstein and the Equation 73
8 Into the Atom 93
9 Quiet in the Midday Snow 100
Part 4 Adulthood
10 Germany's Turn 117
11 Norway 134
12 America's Turn 143
13 8:16 A.M.--Over Japan 163
Part 5 Till the End of Time
14 The Fires of the Sun 173
15 Creating the Earth 184
16 A Brahmin Lifts His Eyes Unto the Sky 195
Epilogue: What Else Einstein Did 204
Appendix Follow-Up of Other Key Participants 221
Notes 237
Guide to Further Reading 301
Acknowledgments 319
Index 325
Read More Show Less

Interviews & Essays

Exclusive Author Essay
The idea for this book dates back to when I was a schoolchild in Chicago. On a field trip, one of my classmates asked our teacher what Einstein had invented. None of the teachers knew, and that was puzzling: We all had heard that Einstein was one of the greatest minds in history. Yet what was it he had invented?

Years passed, and I studied math and physics at the University of Chicago and ultimately ended up teaching at Oxford. Yet I realized that many of my friends now were in the same position my school friends and I had been in those years before: They knew Einstein and relativity and E=mc2 were important...but they didn't know why. I realized I could write a book that would help resolve that, if I simply explained E=mc2 in terms of the people who had played a central role in that equation. Their hopes and ambitions and passions would be a "vehicle" through which I could give readers a powerful, clear explanation of Einstein's science.

To understand what the "m" is doing in the equation, I look at the life of Antoine Lavoisier, the wealthy Parisian whose life ended on the guillotine during the French Revolution; to explain the "e" in the equation, I look at Michael Faraday, a boy from the slums of London at the beginning of the 1800s who rose up to a top position at the Royal Institution (even though the mentor who brought him there ultimately turned against young Faraday at his very moment of triumph).

But the equation also applies in ordinary life, and I show E=mc2 operating in ordinary medical equipment, and even in the red-glowing exit signs in our movie theaters. Its sway stretches out into space, and in one of my favorite chapters I recount the story of Cecilia Payne, the young British woman who first understood that the sun was made out of hydrogen and that this "mass" is "pumped" through the equation to come out as the glowing "energy" that lights up our planet, and our solar system...and glows out through the galaxy, serving as a beacon to Einstein's great insight and all the individuals who were part of his great work.

--David Bodanis

Read More Show Less

Customer Reviews

Average Rating 4
( 19 )
Rating Distribution

5 Star

(9)

4 Star

(4)

3 Star

(2)

2 Star

(2)

1 Star

(2)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 20 Customer Reviews
  • Posted February 14, 2012

    Like it.

    Good Book, neat subject.

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Posted May 20, 2011

    more from this reviewer

    You do not have to be a physicist...

    Quick Version:

    This book is a well laid out explanation of each part of the equation, its history, and its role in our universe.

    Long Version:

    The genesis of David Bodanis' book was an interview he read in which actress Cameron Diaz expressed the desire-serious or in jest-to know what E=mc² really meant. Bodanis realized that the truth is that very few people have even a rudimentary knowledge of the usefulness of the world's most famous equation; this book is his attempt to rectify that.

    The format chosen is an interesting one. Those who are true novices to physics-or lack interest in pursuing the equation beyond the basics-can read the front half of the book and walk away far more knowledgeable than they were when they picked it up. After a brief introduction to the time and place in which Einstein generated the paper which introduce the theory to the scientific world, Bodanis goes on to break down the equation and discuss each of its parts separately. What do they mean, and how do they interact with each other? The reader is then led on a quick trip through history with regards to how the scientific community used the theory-the race to be the first to build "The Bomb" during World War II. Finally, the author discusses the theory in our universe. Those not interested in a brain drain of a read would still likely read the Epilogue, which discusses what else Einstein did, and the interesting appendix, which gives closure regarding the other key participants.

    Of particular interest with regards to the structure of the book are the notes. If you would like to know more details (and are not afraid of either the odd equation or in depth descriptions), Bodanis suggests that you read the notes, where he has taken things a bit further. It is here that I have a bone to pick. The format that was chosen was that of endnotes, as opposed to footnotes. When endnotes are used, there is absolutely no indication within the text that there is a back of the book furtherance of the topic-two members of our book club did not even realize they were there and thus missed the opportunity to add to their reading experience. For those readers that do choose to read the endnotes concurrent with the front half of the book, you are left constantly flipping between the text and the notes to see if you have reached the next note (they are listed by page number). This is extremely disruptive to the flow of a book which requires some level of concentration to read and annoyed me to no end. Footnotes within the text would have been grand. As a side note, a member of our group tried to read the e-reader version. Footnotes would have enabled her to flip from text to notes with ease. As it was, she quickly gave up on trying to maneuver between the two.

    The final section, a guide to further reading, is one of the finest source guides I have ever seen. Books are divided into categories and are each given a paragraph of explanation designed to help the reader ascertain if they are a good fit for their reading list.

    Bodanis tops off his two leveled read with one final feat-he has a website to which he directs the serious student for further, more in depth, study. Whether you are interested in a basic explanation of a complicated theory, have a fascination with physics and would like to know more, or would like to go beyond your high school physics knowledge, this book is likely to fit your need.

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 15, 2007

    Not even good for poets and lovers

    Although this book is some years old, I recently picked off a used shelf and was glad to find that I had wasted only $6. It is really not much of an effort to explain the physics, the developers or the times which have surrounded Einstein's work. Much of the explantion use examples or situations which demonstrate that the author is baised against many of the 'conservative' elements of cultures, applictions of physics (eg the bomb, atomic power, etc). The chapters on the WW2 effort are very clearly slanted and tell a very biased version of the atomic bombs development etc. Stick to Rhodes or Clark for the war effort or Enstein and to real scientific efforts to explain relativity to the lay audienbce

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted April 5, 2006

    the best science book ever

    First, I really enjoyed this book. It was different from other typical science book. This book explains what the E=mc2 means with some biography backgrounds. This book was not about pure science or math. It was about history which enabled Einstein to develop this equation. This book focuses on the ¡°historical background¡± not on the scientist. This book has five chapters: Birth, Ancestors of E=mc2, the early years, Adulthood, and Till the End of Timer. In chapter two, there are some famous scientists who show how the letters come out and what those mean. They even show how ¡°=¡± and ¡°^2¡± came out. I think that you should read this book if you have chance to read because it will expand and let you know about the law of Relativity. As I am reading this book, I was surprised because even I who do not like to read enjoyed this book a lot. I guarantee that you will enjoy this book and you will learn about Einstein and the greatest equation, E=mc2. Lastly, if you want some mathematical book, I would not recommend you to read this book. This is about the history, so you can look for other books that have some pure mathematic equation and sciences topics. After reading this book, you will feel you are the intelligent.

    1 out of 1 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted November 7, 2012

    E=mc¿. I finally know what that means!

    E=mc¿ states that energy equals matter going at the speed of light squared.

    Was this review helpful? Yes  No   Report this review
  • Posted February 24, 2011

    Must read!

    I was skeptical, but after the first few paragraphs, i was pulled in. Mr Bodanis has written a highly entertaining and informative look at the most famous equation in the world. I initially thought it would be dry reading, but it was far from it. He delves into the past for insight, and brings characters from history to life.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted November 24, 2008

    Great For The Layman

    Anyone, particularly anyone without a background in physics, who has ever sat under a star lit sky and wondered how it all works, will find this book enlightening, informative, entertaining, and just a doggone good read. It is, without a doubt, the best simplified explanation of e=mc2 I have ever read. This book offers not only a lay-accessible explanation of the theory, but an outstanding review of real world applications. Great for the lay scientist and history enthusiast alike.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted November 27, 2009

    No text was provided for this review.

  • Anonymous

    Posted July 1, 2009

    No text was provided for this review.

  • Anonymous

    Posted January 6, 2011

    No text was provided for this review.

  • Anonymous

    Posted August 2, 2013

    No text was provided for this review.

  • Anonymous

    Posted June 15, 2010

    No text was provided for this review.

  • Anonymous

    Posted March 6, 2012

    No text was provided for this review.

  • Anonymous

    Posted October 6, 2010

    No text was provided for this review.

  • Anonymous

    Posted June 30, 2011

    No text was provided for this review.

  • Anonymous

    Posted January 25, 2011

    No text was provided for this review.

  • Anonymous

    Posted April 6, 2011

    No text was provided for this review.

  • Anonymous

    Posted July 27, 2009

    No text was provided for this review.

  • Anonymous

    Posted July 25, 2010

    No text was provided for this review.

  • Anonymous

    Posted May 9, 2011

    No text was provided for this review.

Sort by: Showing all of 20 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)