Edison and the Electric Chair: A Story of Light and Death [NOOK Book]


Thomas Edison stunned America in 1879 by unveiling a world-changing invention--the light bulb--and then launching the electrification of America's cities. A decade later, despite having been an avowed opponent of the death penalty, Edison threw his laboratory resources and reputation behind the creation of a very different sort of device--the electric chair. Deftly exploring this startling chapter in American history, Edison & the Electric Chair delivers both a vivid portrait of a nation on the cusp of ...
See more details below
Edison and the Electric Chair: A Story of Light and Death

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK 7.0
  • Samsung Galaxy Tab 4 NOOK 10.1
  • NOOK HD Tablet
  • NOOK HD+ Tablet
  • NOOK eReaders
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
BN.com price
(Save 12%)$11.99 List Price


Thomas Edison stunned America in 1879 by unveiling a world-changing invention--the light bulb--and then launching the electrification of America's cities. A decade later, despite having been an avowed opponent of the death penalty, Edison threw his laboratory resources and reputation behind the creation of a very different sort of device--the electric chair. Deftly exploring this startling chapter in American history, Edison & the Electric Chair delivers both a vivid portrait of a nation on the cusp of modernity and a provocative new examination of Edison himself.

Edison championed the electric chair for reasons that remain controversial to this day. Was Edison genuinely concerned about the suffering of the condemned? Was he waging a campaign to smear his rival George Westinghouse's alternating current and boost his own system? Or was he warning the public of real dangers posed by the high-voltage alternating wires that looped above hundreds of America's streets? Plumbing the fascinating history of electricity, Mark Essig explores America's love of technology and its fascination with violent death, capturing an era when the public was mesmerized and terrified by an invisible force that produced blazing light, powered streetcars, carried telephone conversations--and killed.
Read More Show Less

Editorial Reviews

The Washington Post
Essig offers a thoroughly modern view of Edison, removed from his pedestal and presented less as a genius than as a man with "an eye for the main chance, a knack for publicity, and a grasp of the possibilities of the latest technology." More pointedly, he reveals Edison as less an inventor than a refiner of things already invented (the telegraph printer, the telephone) and a man whose occasional lapses of business scruples caused a former associate to remark that he "had a vacuum where his conscience ought to be." — Tom Graham
Thoroughly but unobtrusively steeped in historical scholarship and written with sober elegance
Wendy Smith
Entertainment Weekly
An engaging and meticulously researched book. Edison & the Electric Chair delivers a thrilling jolt of discovery .
Library Journal
A superb debut...Essig's focused analysis reveals Edison's multifaceted reasons for supporting capital punishment
Essig has thoroughly delved into this curio of technology and morality.
Gilbert Taylor
The New York Times
Although Edison was truly concerned with human suffering in executions, he was more concerned with his own financial interests; in what Essig aptly describes as ''one of the strangest hustles in the history of American business,'' Edison backed the invention and use of the electric chair to expand his business empire. — John D. Thomas
Publishers Weekly
Thomas Edison was deeply concerned about public safety and stoutly opposed to capital punishment. Yet except for the rivalry with George Westinghouse, he would have remained a closet humanitarian. Or so historian of science Essig argues in his first book. The race between Edison, advocate of direct current (DC), and Westinghouse, champion of alternating current (AC), to build an electrical empire in the 1880s is a classic example of runaway Gilded Age capitalism. Essig recounts Edison's early work on electricity and the opening of Manhattan's Pearl Street power plant in 1882. Just four years later, Westinghouse opened his own plant and quickly outpaced Edison in acquiring municipal contracts. Edison publicly decried AC as a safety hazard and convinced New York legislators that electricity offered the cleanest execution method available-provided it was done with AC. Thus in 1890 William Kemmler became the electric chair's first victim. He was not, however, the first victim of electrocution. Around this time, a spectacular series of fatal accidents triggered a citywide panic; and New York ordered unsafe wires cut down. Westinghouse protested while Edison applauded: DC cables were underground. Nonetheless, AC triumphed in the end. Whereas Essig recites the well-known history of public execution and follows the death-penalty debate into the 1990s, he passes over the opportunity to discuss the history of risk and regulation, leaving readers to deduce for themselves the significance of the "battle of the currents" for all citizens condemned to live-and die-in a modern technological nation. 40 b&w illus. History Book Club alternate. (Sept.) Copyright 2003 Reed Business Information.
Kirkus Reviews
High-voltage investigation into the politics of invention and the marketing of science. Imagine what might happen if, say, razor-blade manufacturer Billy Bob Gillette proclaimed that razor blades produced by archrival Silas Schick were the very best instruments to use when cutting someone’s throat. That’s much what Thomas Edison did, writes Essig in this promising debut: though an opponent of capital punishment, he turned his attention in the last decade of the 19th century to the development of the electric chair, which, he argued—at least publicly—was the most humane way to dispose of condemned prisoners, certainly more so than the noose or the bullet. Edison had killed a couple dozen dogs and several horses and calves in his New Jersey laboratory to prove as much. But, he urged, the best way to kill said condemned was not through his direct current, which was a safe form of electricity, but through hated archrival George Westinghouse’s alternating current, which was deadly, he hinted, to anyone who approached it. As for the prisoners who came into contact with AC, he said, "When the time comes, touch a button, close the circuit, and . . . it is over." A brilliant marketing ploy: American states went for capital punishment via the electric chair in a big way, as they did for the cheaper if admittedly more dangerous alternating current. Whereupon, Essig writes, Edison returned to his former position of condemning capital punishment as a barbarity and denied that he’d ever had anything to do with the electric chair, saying, "I did not invent such an instrument." But of course he did. Essig’s fine account, like L.J. Davis’s Fleet Fire (p. 653), doesn’t diminish Edison’sreputation as a scientific innovator and entrepreneur, but it certainly lessens our estimation of him as a human. Agent: Gail Ross
Read More Show Less

Product Details

  • ISBN-13: 9780802719287
  • Publisher: Bloomsbury USA
  • Publication date: 5/26/2009
  • Sold by: Barnes & Noble
  • Format: eBook
  • Edition number: 1
  • Pages: 368
  • Product dimensions: 5.50 (w) x 8.25 (h) x 1.00 (d)
  • File size: 12 MB
  • Note: This product may take a few minutes to download.

Meet the Author

Mark Essig earned a doctorate in American history from Cornell University. A native of St. Louis, he now lives in Los Angeles. This is his first book.
Read More Show Less

Read an Excerpt

Edison & the Electric Chair

A Story of Light and Death

By Mark Regan Essig Walker & Company

Copyright © 2003 Mark Regan Essig
All right reserved.

ISBN: 9780802714060

Chapter One

Early Sparks

The ancient Greeks were the first to record the observation that amber, after being rubbed, attracted bits of straw or cloth. Around 1600 the Englishman William Gilbert noted that materials such as diamond and glass shared amber's attractive qualities. He coined a new word, electric, based on elektron, Greek for amber. An electric was a substance that, when rubbed, drew light objects to itself; electricity was the property shared by these substances.

After Gilbert the study of electricity languished for a century or so until it was taken up by members of London's Royal Society, a new association devoted to the study of the natural world. Using hollow glass tubes thirty inches long and one inch in diameter, Royal Society members produced the strongest electrical effects ever witnessed. In 1729 Stephen Gray, an experimenter with the society, corked the ends of his tube to keep dust from being sucked inside. After rubbing the glass, he noticed to his surprise that feathers were attracted to the cork as well as to the glass. The "attractive Virtue," as he put it, had been "communicated" from the glass to the cork. Curious to see how far this communication would extend, Grayattached ordinary thread to the cork, tied a shilling to the string, and found that the coin attracted feathers. He extended the string and tied on more objects-a piece of tin, an iron poker, a copper teakettle, various vegetables-and found that all became electrified. Gray attached thirty-two feet of thread to the corked end of the glass tube, tied a billiard ball to the other end of the string, and dangled it out a window. When he rubbed the glass, he found that the billiard ball still proved attractive.

Abandoning a plan to drop a string from the cupola of St. Paul's Cathedral, Gray decided to proceed horizontally. He snaked a long piece of iron wire along the ceiling of his workroom, suspending it from the beams with pieces of string. When he touched the wire with the rubbed glass wand, however, the attractive virtue did not communicate to the far end. Gray thought the string suspenders might be too thick, so he tried silk, which worked beautifully. Equally thin brass, however, failed, leading Gray to conclude that success depended upon the supports "being Silk, and not upon their being small." The differences between silk and brass wire raised the question of which objects could be supports and which receivers. (Before long another experimenter started calling these two classes conductors and insulators.) To test the electrical properties of the human body, Gray persuaded an orphan boy to allow himself to be suspended horizontally from the ceiling, supported at his chest and thighs by stout loops of silk. Gray rubbed his glass tube, touched it to the lad's feet, and found that he attracted feathers to his fingers.

Philosophers at the time believed that electricity-as well as light, heat, and magnetism-consisted of exquisitely fine "fluids" that passed through ordinary matter. The electrical phenomena of attraction and repulsion were thought to be caused by jets of subtle fluids blowing into and out of tiny pores in larger objects. The public, however, was less concerned with theories of electricity than with the thrilling effects it produced. Members of polite society in the eighteenth century flocked to scientific lecture-demonstrations, where they learned about planetary motion, the shape of the Earth, and the size of the solar system. Newtonian physics could be a bit dull, but a suspended human body attracting objects to its fingers-that was magic. Electrical displays swept Europe in the 1740s, and a French entrepreneur sold electrical kits that included a glass wand for rubbing, light objects for attracting, and thick silk cords for hanging human conductors. In darkened rooms lecturers drew sparks-"electrical fire"-from the noses of suspended men.

Experimenters in Germany produced more flamboyant effects. They replaced the glass wand with a spinning globe and used a "rubber" of leather or paper to excite it. They also suspended prime conductors-usually a sword or gun barrel-near the globe to collect the charge. Experimenters were soon killing flies with shocks from their fingers and showcasing the "Venus electrificata," a woman whose kisses threw sparks. When a glass of brandy was lifted toward the lips of a charged man, the spark from his nose set the liquor aflame.

Human conductors began to complain that these shocks were unpleasant, but they did not know true pain until they experienced another new device. In 1746 Pieter van Musschenbroek of the University of Leyden attempted to produce electricity with a glass globe and then store it in a jar of water. He attached a wire to the gun barrel that served as his prime conductor and placed the wire's end in a water-filled glass jar. While an assistant spun and rubbed the glass globe, Musschenbroek held the water jar in his hand and reached toward the gun barrel. The shock knocked him to the floor. Unwittingly, he had invented what became known as the Leyden jar, which could build up charges of remarkable strength. One experimenter used the jar to knock children off their feet, and another reported that his wife could not walk for a time after being shocked. The discharge (a new word coined to describe the Leyden jar shock) could be communicated through several people. In France, to amuse the king, a powerful Leyden jar was discharged first through a circle of 140 courtiers, then through 180 gendarmes. Two hundred Cistercians felt the jolt in their Paris monastery and leaped toward the heavens in unison. The experimenters found they could make the shocks even more powerful by linking several jars to form a battery. One man wrote, "Would it not be a Fatal surprise to the first experimenter who found a way to intensify electricity to an artificial lightning, and fell a martyr to his curiosity?"

Atmospheric lightning-the type that shot from the heavens-posed greater dangers and provoked nearly as much curiosity. According to prevailing theories, lightning resulted from colliding clouds or some unknown chemical reaction in the atmosphere, but no one knew for sure what it was. A few believed that it was composed of electrical fluid-the spark and crackle of electricity made the connection obvious-but this theory had not been proved. Inspired by an itinerant lecturer, the Philadelphia printer Benjamin Franklin began experimenting with electricity in 1745. A few years later he proposed an experiment to "determine the Question, Whether the Clouds that contain Lightning are electrified or not." He attached a silk handle to the end of a kite string and tied a key where silk and string met. Standing in a doorway to keep himself and the silk dry, he flew the kite into a "Thunder Gust." Electricity tingled down the wet string, and Franklin drew sparks from the key first with his knuckle, then with his tongue.

Many experimenters in Europe tried variations on Franklin's experiment. Most survived the dangerous test unscathed, either through dumb luck or because they carefully insulated themselves from the lightning. In 1753, however, Georg Wilhelm Richmann, a German working in St. Petersburg, drew a bolt directly through his body. He became the first man to sacrifice his life in the pursuit of electrical knowledge.

Franklin himself knew something about death from electricity. Not long after he proposed his famous lightning experiment, he informed a friend that the discharge from a battery of two Leyden jars was "sufficient to kill common Hens outright." The birds died so quickly, he said, that "compassionate persons" might adopt it as a method of killing. Butchers could build a battery of six Leyden jars, link the battery to a chain, wrap the chain around the thighs of a turkey, and lift the bird until its head touched the prime conductor. "The animal dies instantly," Franklin wrote. He warned experimenters to be cautious. While killing turkeys, he accidentally administered the shock to himself.' "It seem'd an universal Blow from head to foot throughout the Body.... My Arms and Back of my Neck felt somewhat numb the remainder of the Evening, and my Breastbone was sore for a Week after, [as] if it had been bruiz'd. What the Consequence would be, if such a Shock were taken thro' the Head, I know not." But electrical slaughter, Franklin averred, was worth the danger: "I conceit that the Birds kill'd in this Manner eat uncommonly tender."

Franklin also gave Leyden jar shocks to people in an attempt to cure them of paralysis. Like others caught up in the electrical mania of the mid-eighteenth century, he believed that the remarkable new force could be used as a medical therapy. John Wesley, the founder of Methodism, was one of England's strongest advocates of electrical cures. Some physicians sealed a drug inside a glass wand, electrified it, and applied sparks to patients, claiming that the essence of the medicine penetrated the body along with the subtle electrical fluid. Although physicians sold electricity as a panacea capable of curing everything from constipation to venereal diseases to hysteria, most, like Franklin, focused on paralysis. Victims of the Leyden jar reported that the shocks made their muscles contract, and doctors claimed that electricity could restore paralyzed limbs.

Electricity's ability to contract muscles also caught the attention of physiologists. A popular theory at the time held that the brain produced subtle "animal spirits" that were carried by the nerves to move the muscles of the body. Once it was found that electricity caused muscle contraction, some proposed that electrical fluid and animal spirits were one and the same-that electricity was the natural substance coursing through the nerves of animals.

In the 1780s the Bolognese physiologist Luigi Galvani was testing the effects of electricity on muscles. When he ran brass hooks through frog legs and hung them on an iron railing, he was surprised to see that the legs contracted spontaneously, without any application of the spark. He found that he could induce contractions by touching the frog leg in two places with different metals. Galvani supposed that the frog leg was a miniature Leyden jar, which he was discharging by the touch of two pieces of metal. Since there was no external source of electricity, the jolt must have come from within the frog leg-it was "animal electricity," he said, created and stored in muscle tissue.

Galvani's results, published in 1791, did not convince everyone. Alessandro Volta, a professor of physics, claimed that the electricity that contracted Galvani's frog leg arose not within the leg itself but from the contact of brass hook and iron railing. This statement itself was controversial. All known electricity was created by rubbing glass or other insulators; Volta claimed that he could create electricity simply by bringing two different metals into contact. Volta convinced few people of this new theory of electrical generation until he created a device to demonstrate his point. He stacked multiple pairs of silver and zinc disks, placing a piece of wet cardboard between each pair. This electrical column, or pile, multiplied the effects of the individual pairs of disks and, when touched at either end, produced a palpable shock. Volta built a pile of forty pairs and gave himself a jolt through the ears: "The disagreeable sensation, and which I apprehended might be dangerous, of the shock in the brain, prevented me from repeating this experiment."

The voltaic pile, created to quash the notion of animal electricity, had effects Volta never imagined. The pile could be used to charge Leyden jars, which confirmed that this new electricity was similar to that produced by rubbing glass. But there were crucial differences. Previously, all electricity had been what is now called static-the buildup of a charge, followed by its transitory discharge. The pile created an electric current that flowed indefinitely and could be made stronger by adding more pairs of metal disks.

Volta's pile, described in a letter to London's Royal Society in 1800, set off a frenzy of experimentation. One man built a battery from two types of silverware, although it was more common to pair silver half crowns with zinc disks. By summer experimenters reported that when they attached two wires to a pile and ran the "galvanic current" through water, hydrogen bubbles formed on one electrode while oxygen formed a compound with the metal of the other electrode. The current, in other words, had decomposed water into its component parts, and the science of electrochemistry was born. Humphry Davy, a professor of chemistry at the Royal Institution in London, ran the current through two common substances-potash and soda-and produced tiny globules of previously unknown metals, which were named potassium and sodium.

Davy's prestige in London rested as much on his skills as a popular lecturer as on his scientific discoveries. Though important to science, electrochemistry offered little drama in the lecture hall, so Davy found ways to please his audience. In an 1809 demonstration he ran the current from a powerful battery across a small gap between two carbon rods. As the current jumped the gap, it created a brilliant, arc-shaped, blue-white light that flooded the lecture hall and astonished the crowd.

Davy had invented what came to be known as the arc light. At the time it had few practical applications, since batteries powerful enough to produce the effect consumed large amounts of rare metals-silver, copper, zinc-and were therefore enormously expensive. Around 1830, however, scientists discovered a new way to produce electricity. Michael Faraday, who started his scientific career as Davy's assistant, became intrigued by a report that an electric current caused movement in a nearby compass needle. This suggested that electricity produced magnetism. Faraday wondered if the reverse was true-whether magnetism could produce electricity. In 1831 he showed that rotating a coil of conducting wire within the lines of force of a magnetic field caused a current to flow in the wire. Following Faraday's lead, instrument makers in France created the first magneto-electric generators (often shortened to magnetos), hand-cranked machines that spun coils of wire relative to magnetic fields, creating electrical current.

The coils of conducting wire in a generator were known as an armature. As figure 1 shows, when the armature was in the first half of its rotation, the current moved along the conductor in one direction, from point A to point B. But in the second half of the turn, the relationship between the coil and the north and south poles of the magnet was reversed, causing the current to flow from point B to point A. For every 360-degree turn of the coil, the current changed direction twice: from A-B to B-A, then back again. This became known as intermittent-or alternating-current.

Electricity so produced behaved differently from battery current, which flowed continuously in one direction. Electrochemistry-decomposing water or isolating sodium from soda, for instance-depended on one electrode remaining positive and the other negative. The same was true for electroplating, in which a brass object such as a spoon was placed in a solution of potassium cyanide in which gold had been dissolved. When an electric current was run through the solution, the spoon-which served as the negative electrode-became coated with a layer of gold. Electroplating and electrochemistry required continuous current, because the processes did not work if each electrode was alternately positive and negative, as was the case with alternating current. Magnetos created a form of electricity that appeared to be unusable.


Excerpted from Edison & the Electric Chair by Mark Regan Essig Copyright © 2003 by Mark Regan Essig. Excerpted by permission.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Table of Contents

Prologue: Edison on the Witness Stand 1
Ch. 1 Early Sparks 5
Ch. 2 The Inventor 16
Ch. 3 Light 26
Ch. 4 Electricity and Life 40
Ch. 5 "Down to the Last Penny" 49
Ch. 6 Wiring New York 62
Ch. 7 The Hanging Ritual 74
Ch. 8 The Death Penalty Commission 85
Ch. 9 George Westinghouse and the Rise of Alternating Current 100
Ch. 10 The Electrical Execution Law 118
Ch. 11 "A Desperate Fight" 134
Ch. 12 "Criminal Economy" 148
Ch. 13 Condemned 163
Ch. 14 Showdown 174
Ch. 15 The Unmasking of Harold Brown 190
Ch. 16 Pride and Reputation 200
Ch. 17 The Electric Wire Panic 212
Ch. 18 Designing the Electric Chair 224
Ch. 19 The Conversion of William Kemmler 234
Ch. 20 The First Experiment 245
Ch. 21 Alter Kemmler 254
Ch. 22 The End of the Battle of the Currents 265
Ch. 23 The Age of the Electric Chair 277
Epilogue: The New Spectacle of Death 286
Acknowledgments 295
Notes 297
Art Credits 341
Index 343
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 2 Customer Reviews
  • Anonymous

    Posted April 26, 2012


    Deathpaw taught Morningpaw to fight. "You have to learn to defend yourself. I won't always be here to protect you, and you have got to learn to survive." He also taught her to hunt. She was a natural hunter, as if born to be a warrior. Deathpaw still hunted for her most of the time.
    They set up a camp and were content on thier own.
    One night in his sleep, Deathpaw was visited by starry cats. They told him this prophocey: MORNING LIGHT WILL FADE AS LONG AS DEATH HAS IT'S CLAWS.
    Deathpaw began to fear being with Morningpaw. He was sure the prophocy was telling him that he would be the death of Morningpaw. So he told hervto go her srperate ways. He would make sure she wouldn't die because of him. But she wasn't going anywhere. She said she would sooner die than lose her last brother. So he let her stay. They were hunting together one day and a dog attacked. The dog leaped at Morningpaw, but Deathpaw leaped onto the dogs nose. The dog reared up as Deathpaw slashed its eyes. The dog swiped Deathpaw to the ground, but Deathpaw got to his paws quickly. Morningpaw rushed at the dog and clawed his soft belly while Deathpaw yanked the dogs tail. The dog soon fled, feeling as if it left most of its fur with the cats. Neither one of the apprentices was injured during the attack. For the next moon, they hunted only when they were hungry and they trained for fighting. Deathpaw taught Morningpaw how to sharpen her claws so they were like daggers, and how to climb through trees as silently as a squirrel. She was only too eager to learn. Soon enough, Morningpaw was able to put her skills to the test. Blazeclan attacked. The odds were four to one, but the appretices emmerged victorious. They won the battle with very minor scratches. To celebrate their victory, they made themselves warriors. Forgetting the prohocy, Deathpaw named Morningpaw, Morninglight. Morninglight named him Deathfang. Their victory was soon soured by Bloodclan. A Bloodclan warrior, Deathclaw, was stalking them through the shadows. When he saw Morninglight, he fell in love with her. *******************************************
    For more go to the eighth result next week

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted May 14, 2010

    No text was provided for this review.

Sort by: Showing all of 2 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)